

Volume 6 (September 2017)

NEXUS Indian Fertility Society & ORIGIO India Initiative

Vitrification: An Enigma Frozen life

> PROF (DR) PANKAJ TALWAR JOINT SECRETARY - IFS EDITOR - NEXUS

PRESIDENT'S MESSAGE

It gives me immense pleasure to present to you this edition of NEXUS which covers the vast topic of vitrification in its entirety. Today, the technology of vitrification forms the backbone of a successful ART programme, whether it is the cryopreservation of supernumerary embryos or freeze-all embryos as a part of segmentation in cases of imminent ovarian hyperstimulation syndrome.

Freezing of embryos as a part of biopsy and preimplantation genetic diagnosis or screening, or gamete cryopreservation either electively, or those diagnosed with malignancy and about to start a potentially sterilizing treatment are other common indications .

Optimising of the vitrification technique is required to achieve excellent pregnancy and live birth rates comparable, and sometimes superior to transfer in a fresh cycle. This involves a deep understanding of the media used, the importance of the adherence to the protocols formulated by different manufacturers, and an in-depth knowledge of the various carrier devices used for oocyte and embryo loading.

It is a great pleasure and privilege to write this message for the 6th E-bulletin of IFS Nexus. I also sincerely thank "Origio India Private Ltd" for supporting us in this academic endeavor.

SECRETARY'S MESSAGE

Dr. Sohani Verma President-IFS

This is an honor for me to write best wishes message for this edition of Nexus bulletin on "Vitrification".

With the advent of vitrification in the field of assisted reproduction, it has become possible to achieve a near 100% survival of oocytes and embryos following cryopreservation. Oocytes and all embryonic stages from zygote to blastocysts are amenable to vitrification with excellent post warming recovery.

This is a potentially revolutionary technology as it helps the fertility specialists to overcome the obstacles of ovarian hyperstimulation, elevated progesterone in late follicular phase, poor endometrium following stimulation, bleeding and difficult embryo transfer. However, it is necessary to adhere to the recommended protocols and manufacturer's guidelines when using any vitrification media or carrier device to achieve optimal recovery.

This bulletin will offer the reader the finer nuances involved in achieving high post warming survival rates, and the tips and tricks to optimize your current vitrification program.

Indian Fertility Society feels proud and congratulates the editors of the 6th edition of Nexus E-bulletin. It would not only help to disseminate scientific & ethical content but also constantly update the readers with new developments and research across the world.

I wish the editorial team best of luck in this endeavor.

Dr. K.D. Nayar Secretary General-IFS

EDITOR'S MESSAGE

To start with, the editorial team would like to express heartfelt thanks to all the readers for appreciating and acknowledging previous bulletins of nexus. **The bulletin has been named NEXUS which means bridging gaps.**

Such bulletins, being call of the day not only bridges the gap between existing knowledge and recent advances but also covers all essential details related to infertility with nice algorithms.

Cryobiology has been very dear to my heart since years. Things were not very simple in our era of learning and we did not have good teachers too. You Tube and Google were not very helpful either and learning was with one to one interaction with a kind teacher if we could find one. It took me a long time to understand nuances of vitrification which I started 2005 onwards with multiple learning failures in the beginning.

With nexus on my side I am trying to percolate down what ever I know to you all in simple and lucid way without hiding any details.

Our present edition is focussed on vitrification process which is a rapidly emerging technique of cryopreservation. Embryos were routinely cryopreserved by slow freezing methods a decade back. However, there are some constraints with these protocols which includes -longer time taking, intracellular ice crystal formation leading to cellular damage and need for expensive programmable freezing equipments.

Vitrification leads to ultra rapid cooling of a solution containing high concentration of cryoprotectant, inducing a glass like state, as a result avoiding ice crystal formation and cellular damage. It also favours short equilibration time, fast cooling rates and no expensive equipments. Vitrification has come a long way and till date the results obtained with this process are equal or better than conventional slow freezing techniques.

In this issue, the intricacies of the vitrification technique are discussed along with an in-depth comparison of various vitrification-warming media and the carrier devices available in the market. We sincerely hope that this bulletin would benefit senior, junior & trainee embryologists and clinicians with a keen interest in the nuances of gamete cryopreservation.

Our aim remains **"Empowering Knowledge"** and we sincerely hope that you would enjoy reading this write up. Feel free to communicate with us any point of time and your critical contribution would attribute to the fineness of bulletin. Your valuable comments would be published in the next bulletin which is titled **"deciphering Embryos"**.

I am thankful to **Dr Pranay Ghosh** and **Miss Sapna** for helping me in designing this piece of art. We would also like to express our truthful thanks to Origio India Limited who are helping us in the publication of this bulletin.

Wishing you all a very happy reading and yes don't forget to file this issue.

Jaihind

Prof (Dr) Pankaj Talwar Joint Secretary-IFS Editor NEXUS M: +91 9810790063 E: pankaj_1310@yahoo.co.in

Guest Editors For The Edition

Having reached a bottleneck in ART in terms of success rates, the endeavor to improve the pregnancy and livebirth rates has intensified. Whether it is the transfer of a single genetically normal embryo deemed disease free and euploid by preimplantation genetic diagnosis and screening, the transfer of embryo/s in a more physiological uterine environment as a part of "freeze-all" and "segmentation" strategy or simply achieving a higher cumulative success rate by freeze-thaw-transfer of supernumerary embryos produced by a single stimulation, the cornerstone of all these modalities is vitrification. This bulletin provides an in-depth review of the various vitrification-warming media and carrier devices available today, and the tips to optimize your current practice.

Dr. Pranay Ghosh MS (O&G), M.Med.Sci – ART (Nottingham) ESHRE Certified Clinical Embryologist DRM, F.MAS

I would take this opportunity to thank Dr. Pankaj Talwar for the immense faith he has shown in me and endowed me with the responsibility of being a part of this edition of the Nexus E-bulletin. I tried my best efforts to complete the assigned role under his able guidance.

Sapna B.Tech (Biotechnology)

Index

S.NO.	TOPIC	PAGE NO.
1.	Background of vitrification	6
2.	Vitrification vs. slow-freezing	6
3.	Laboratory pre-requisites for vitrification	6
4.	Cryoprotective agents	6
5.	Vitrification carrier devices	7
6.	Composition of vitrification media	8
7.	Post warming embryo survival	8
8.	Vitrification of oocytes	8
9.	Vitrification of cleavage-stage embryos	8
10.	Vitrification of morula stage embryos & blastocysts	8
11.	Surface temperature for vitrification	9
12.	Duration of cryostorage following vitrification	9
13.	Risks involved in vitrification	10
14.	Indications & advantages of oocyte & embryo freezing	11
15.	Leidenfrost effect	11
16.	Oocyte/embryo warming	12
17.	Evolution of cryopreservation from slow freezing to vitrification	12
18.	Peculiarities of oocyte vitrification	12
19.	Peculiarities of blastocyst vitrification	12
20.	Working magnification for vitrification	13
21.	Vitrification in ovarian tissue cryopreservation	13
22.	Vitrification for sperm cryopreservation	13
23.	Tips to optimize vitrification results	14
24.	References	22

01 What is vitrification and how does it work?

Vitrification is defined as "the instant solidification of a solution brought about by an extreme elevation in viscosity during cooling, without ice crystal formation". It is a kinetic process in which a liquid solidifies into a glassy state (derived from "vitri", meaning glass in Greek). Upon cooling to extremely low temperatures, the liquid reaches its glass transition temperature at which it changes to solid state. Vitrification is faster and lacks some of the typical disadvantages seen in traditional slow freezing.

The recent improvements in vitrification techniques include reduction of concentration of cryoprotectants, increase of cooling and warming rates, and use of novel cryodevices.

The measure of internal energy in a physical system is temperature. It is this internal energy that allows the molecules in fluids to tumble, twist, dissociate from one another, move from place to place in fluid, and chemically react with other molecules. On reducing the temperature, the energy to drive this molecular motion decreases. In systems such as pure water, temperature reduction below a certain point results in abrupt reorganization of the fluid into an organized solid lattice called crystal. This is referred to as freezing. However, in other systems, temperature reduction just causes more slowing of molecular motion, less molecular mobility and lowering of chemical reaction rates until a critical temperature is reached below which the system almost completely loses its fluidity. This temperature is known as the "glass transition temperature", and the fluid becomes a "liquid solid" or more formally, a "glass" that is said to have "vitrified".

The cryopreservation of gametes and embryos involves an initial exposure to cryoprotectants, cooling to subzero temperatures, storage, thawing, and finally, dilution and removal of the cryoprotectants, with a return to a physiological environment which allows their further development.

Why vitrification is more efficient than slow-freezing?

Vitrification is now regarded as a potential alternative to the conventional slow freezing method as it has the advantage of preventing ice crystal formation and this rapid freezing technique also minimizes chilling injury and osmotic shock to the embryo. Two conditions usually required to allow vitrification are an increase in the viscosity and a depression of the freezing temperature. These conditions are achieved by addition of CPA which acts like antifreeze. Vitrification usually requires the addition of CPA prior to cooling. Other components required for vitrification are basal medium buffered with phosphate or HEPES, macromolecules, sugars and proteins. The technique of vitrification has undergone various improvements by using less toxic and more permeable chemicals, by using combination of CPA to reduce toxicity, using a stepwise approach to equilibration and increasing cooling and warming rates¹.

*		0
FACTORS	VITRIFICATION	CONVENTIONAL SLOW-FREEZING
Time consumed	Less (10 minutes)	More (3 hours)
Instruments	Inexpensive	Expensive
Sample volumes	< 4 nL	100 to 250 μL
Cooling rates	15,000 to 30,000° c/min	0.3 to 0.6 ^o c/min
CPA concentration	High	Low
Ice crystallization	No	Yes
Direct contact with LN_2	Depends on the carrier being used	No
Mechanical damage	Less or none	More
Chemical damage	More	Less

Table:1. Comparison of embryo vitrification with conventional slow freezing¹

03 What are the laboratory pre-requisites for vitrification?

As opposed to slow-freezing, vitrification does not require any special equipment. The following disposables and media are required to carry out successful vitrification:

1. Cryoprotective agents A cryoprotectant is a substance used to protect biological tissue from freezing damage (i.e. that due to ice formation). Though they may have varying chemical compositions, all CPAs are highly water soluble, but possess a concentration-dependent toxicity. They cause the lowering of the freezing point of the solution, displace the water from intracellular to extracellular environment and hence alter the solute concentration in the liquid phase². There are two classes of CPAs:

- Permeating CPA These agents penetrate the cell membrane, and have low molecular weights (<400 g/mol). They cross the membrane easily thereby creating an osmotic gradient, leading to shift of water from intracellular to extracellular compartment, and hence further lowering the freezing point. This class includes glycerol, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and 1,2 propanediol (PROH).
- Non-permeating CPA These agents do not cross the cell membrane, and have large molecular weights (>1000 g/mol). They increase the concentration of extracellular solutes, thereby creating an osmotic gradient and hence causing cellular dehydration. This class includes sugars like sucrose, fructose, dextrose, trehalose, raffinose etc.

We commonly use equilibration and vitrification solutions for the 2-step vitrification procedure. The equilibration solution contains 20-50% lower concentration of permeating cryoprotectants as compared to second step vitrification solution. The lower concentration of permeating cryoprotectants in the equilibration solution makes it much less toxic than the vitrification solution. Oocytes/embryos in the equilibration solution shrink initially and gradually re-expand to their original volume after brief exposure to the cryoprotectants. Re-expansion of the cells depicts healthy oocyte/embryo with intact and functional membranes, and ensures successful vitrification-warming outcome. Quick re-expansion reduces the time needed for exposure of the gametes and embryos to the vitrification solution. Vitrification provides better chances of survival for oocytes and other cells with high water content and those that have a low surface / volume ratio³. Single step vitrification without equilibration step leads to the possibility of insufficient permeation of the cryoprotectants that may result in intracellular ice formation during cooling or warming.

- 2. Vitrification carrier devices After short exposure of the embryos to the equilibration and the vitrification solution they may be loaded on the cryo-devices of various capacities. These can be open or closed and work with variable volumes of cryofreezing solutions. Some of them are enumerated below:
- **Conventional straw** For the conventional straw method for vitrification, the embryos are loaded in 0.25 ml plastic straws. The embryos are loaded the same way as done for the slow conventional freezing technique. The straw is then directly plunged into liquid nitrogen. During warming procedure, the straw is taken out of the LN₂ and held in the air for 5 seconds, then plunged into water bath at 37 °C for 10 seconds. The vitrification solution in the straw after cooling should remain transparent in the liquid nitrogen and air depicting minimal or no water molecules in the cryosolution. A whitish discoloration of vitrification medium in the straw indicates ice formation and unsuccessful outcome.
- Electron microscope copper grids Use of Electron microscope copper grids is not a popular method for vitrification any more. Biological EM work is done on small (several millimeters) copper discs called grids cast with a fine mesh. This mesh can vary a lot depending on the intended application, but is usually about 15 squares per millimeter (400 squares per inch). On top of this grid, a thin layer of carbon is deposited by evaporating carbon graphite onto it. Thin carbon film on the grid holds the sample during the procedure. Embryos are placed on the electron microscope copper EMgrids (IGC 400; Pelco International, CA, USA). The grids act as a physical support and maximize cooling rates when the embryos are directly plunged into liquid nitrogen (LN₂). It is recommended that 2-3 embryos are transferred onto the electron microscope copper grid at a time . To further reduce the volume of vitrification solution and thus the cooling rates, the underside of the grid is blotted on a filter membrane . The grid supporting the oocytes is now plunged into liquid nitrogen using fine forceps, and stored in a cryovial filled with liquid nitrogen. During warming, the grid is extracted and directly submerged in the warming solution⁴.
- Open pulled straw 0.25 ml plastic straw is heated, softened and pulled manually. The pulled straw is cut at the tapered end. The inner diameter of the tip is approximately 0.8 mm with a wall thickness of 0.77 mm. Commercial sterile pulled straws have recently become available. Embryos are loaded into the tip of the pulled straw through the capillary effect by simply touching a microdrop (1-2 μL) of vitrification solution containing the embryos. Plunging the OPS directly into liquid nitrogen leads to the cooling of the embryos. For warming procedure, the tip of OPS is submerged into the dilution solution, and the positive pressure of the expanding gas column in the straw expels the embryos spontaneously in the media droplet.
- **Cryoloop** The cryoloop consists of a nylon loop (0.5-0.7 mm diameter) mounted on a stainless steel rod that is inserted into the lid of a cryovial loop is dipped into vitrification solution to make a filmy layer of solution on the nylon cryoloop by surface tension and embryos are place over this film in minimal volume of the vitrification solution. Now the cryoloop is directly plunged into liquid nitrogen. At the time of warming the vial is opened, and the cryoloop is placed directly into the warming solution⁵.

Cryotop The cryotop has a fine polypropylene strip (0.4 mm wide x 20 mm long x 0.1 mm thick), attached to a plastic holder and equipped with a protective plastic tube. Embryos are loaded on the strip with minimal vitrification solution. The Cryotop is immersed directly into liquid nitrogen. For warming, the protective cover is removed from the cryotop and the strip is placed directly into the warming solution to release the embryos⁶.

- 3. Liquid nitrogen
- 4. Dewars for liquid nitrogen storage
- 5. Patient identification system
- 6. Security measures against accidental warming (including an appropriate sensor alarm for each cryocan)
- 7. Specially designed reservoir boxes with foam insulation to hold LN₂. Alternatively, clean Styrofoam boxes can be used.

The other equipment that are required for carrying out vitrification are standard part of an embryology laboratory e.g. Laminar flow hood with a heated microscope stage, warming plate, stereozoom microscope, micropipettes and micropipette tips, flexipets, stripper handle, benchtop stop watch, forceps of various sizes, and fine-tip permanent markers.

04 What is the composition of media used for vitrification?

Vitrification cooling solutions contain a mixture of permeating and non-permeating cryoprotectants in increasing concentrations and are basically composed of HEPES or MOPS buffered media, whereas warming solutions are composed of decreasing concentrations of sucrose.

U5 What is the survival rate of vitrified warmed embryos?

The post warming survival rates depend on various factors e.g. the stage of embryo cryopreservation, embryo morphology, the type of vitrification media used, the type of carrier device used and additional factors like blastocoel collapse for blastocyst vitrification, temperature at which vitrification is carried out etc.

Vitrification warming of early cleavage-stage embryos and blastocysts has produced high post warming survival rates, and with the current media and protocols we can expect at least 90% cryosurvival rates.

YEAR	AUTHORS	STAGE	CPA USED	CARRIER	NUMBER OF VITRIFIED EMBRYOS	Survival %
2015	Debrock et al ⁷	6-8 cell	DMSO/EG	CBS-Vit High security	217	84.3
2014	Fasano et al ⁸	2-12 cells	DMSO/EG EG/PE	High security straw High security straw	330 330	89.4 87.6
2012	Wang et al ⁹	6-8 cell	EG/DMSO/S	Cryoleaf	825	86.6
2009	Rama Raju et al ¹⁰	6-8 cell	EG based	Cryoloop	907	90.37
2008	Balaban et al ¹¹	6-8 cell	EG/PE	Cryoloop	234	94.8
2007	Al Hasani et al ¹²	Zygote	EG/DMSO/S	Cryotop	339	98

Table:2. Vitrification of early-stage embryos

When should we vitrify an oocyte or an embryo? At which cell stage is it recommended to freeze an embryo?

OOCYTE

The optimal stage of vitrifying oocytes is 2-4 hours post oocyte retrieval. Optimal timing for carrying out ICSI on human oocytes has been found to range from 37 hours to 41 hours after administration of human chorionic gonadotropin (hCG)¹³. In most vitrification programmes, oocyte retrieval is carried out between 34-36 hours post hCG trigger, and oocyte vitrification is carried out 2 hours after oocyte retrieval. This is carried out immediately after removal of cumulus cells (denudation). After warming, oocytes need to be incubated for 2-4 hours before carrying out ICSI, as there is severe spindle disorganization immediately post warming which may affect the fertilization and cause increased rates of digynic fertilization if ICSI is carried out immediately post warming. Amongst the oocytes, MII oocytes are more resistant to cryodamage as compared to GV stage oocytes are undulating and flexible, these cytoskeletal elements. While the microtubules and microfilaments in MII stage oocytes are undulating and flexible, these cytoskeletal elements appear straight and rigid in GV stage oocytes.

EARLY STAGE EMBRYOS

Vitrification can be successfully carried out with excellent post warming recovery for embryos cryopreserved from pronuclear stage to 8-10 cell stages. There are several protocols available for cleavage stage embryo vitrification. However, they have the same underlying principle, and the differences in the protocol are related to the type and concentration of CPAs and the duration of exposure to CPAs. Few studies have reported superior results with day 3 vitrification as compared to day 2 vitrification¹⁴. It may be argued that day 3 embryo vitrification inherently offers a better selection as compared to day 2 embryo vitrification, and hence the better results. Moreover, blastomere loss post warming may be more critical for a day 2 4-cell embryo as compared to a 6-8 cell day-3 embryo, since the loss of a single blastomere translates to the reduction of cellular machinery by 25% in a 4-cell embryo as compared to about 12.5% in an 8-cell embryo.

MORULA AND BLASTOCYST STAGE EMBRYOS

Embryo vitrification on day 4 at the morula or the compaction stage has been described in the literature and is associated with comparable outcomes as compared to the cleavage-stage embryo and blastocyst vitrification¹⁵. The presumed advantages of day 4 vitrification over day 3 vitrification are better embryo selection and the fact that embryonic genome activation is completed. Another presumed advantage over day 5 vitrification is that blastocoel collapse is not required as compared to early or expanded blastocysts.

Blastocyst vitrification is optimally carried out when the blastocyst size is between 170 to 220 μ m. Some of the media and protocols advocate the artificial collapse of blastocoel cavity either by applying a LASER shot or mechanically by needle (micromanipulation injection pipette or a PZD pipette) e.g. Origio Medicult, Vitrolife etc. whereas others do not e.g. Kitazato, Cryotech etc.

There is no single recommendation regarding the optimal stage to freeze the embryo, and every clinic has to adapt the vitrification protocol to their post warming cryo survival for different embryonic stages. However, with the advent of newer media & protocols and an increasing trend towards trophoectoderm biopsy for preimplantation genetic diagnosis/screening, day 5 blastocyst vitrification is emerging as the embryonic stage of choice for vitrification, and all vitrification programs must attempt to optimize it. Arguably, if there are supernumerary embryos following day 2/3 embryo transfer, then a day 5 culture would have offered a better selection to enable a single embryo transfer, and it would be recommended to vitrify any supernumerary embryos then.

Which surface among cold or warm is better for vitrification?

Apart from exposure time and toxicity of cryoprotectant used, the other factor determining the outcome of vitrification is the temperature at which vitrification is carried out. There are two schools of thought regarding the best temperature to carry out vitrification. The first one advocates the use of lower temperature (room temperature) to reduce the cryoprotectant toxicity while carrying out vitrification. On the other hand, some argue that based on oocyte meiotic spindle studies, vitrification carried out at 37°C results in a faster spindle recovery as compared to when conducted at room temperature¹⁶ (Table 3).

Table:3

VITRIFICATION / WARMING TEMPERATURE	RT/RT	RT/37 °C	37 °C/37 °C
SPINDLE RECOVERY TIME (MINS)	180	30	15

However, due regard should be paid to the manufacturer guidelines and the vitrification and warming processes should be carried out at the temperatures mentioned in the product insert.

08

For how long can oocyte/embryos be vitrified?

Ample studies have been carried out that conclude that there is no significant impact of storage on clinical pregnancy, implantation, miscarriage or live birth rates, and that the cryostorage duration does not affect post thaw survival or pregnancy outcome ^{17,18}.

Storage at -196°C virtually eliminates all movement of atoms or molecules, and it is speculated that at these temperatures only the background cosmic radiation induced modifications to the stored tissue is possible.

Based on complex mathematical calculations elucidating the $T\alpha$ (glass transition temperature) for various cryoprotectant solutions, the projected safe storage times in the amorphous state are as follows:

Table:4. Projected safe storage times in the amorphous state¹⁹

	CRY	TIME UNITO		
IEWIPEKAIUKE	M22	DAP ₁₀	DMSO	
-22 °C	1	1	1	Min
-80 °C	13.2	23.2	2.7	Hours
-90 °C	5.5	12.0	0.62	Days
-100 °C	18.0	53.3	0.85	Weeks
-115 °C	652	4379	3.18	Years
-121 °C	82,374	990,388	81.7	Years

What happens if the oocytes/embryos as exposed to longer duration in the media than the defined time period?

On prolonged exposure to cyoprotectants, there may be excessive movement of water across cell membrane, and hence excessive dehydration resulting in cell contraction or expansion beyond safe osmotic limits. Though osmotic buffers are added to cryoprotectant solutions, it is still prudent to limit the exposure to cryoprotectants within the specified time mentioned in the individual protocols. Prolonged exposure of oocytes to cryoprotectant solutions may lead to oocyte degeneration and parthenogenetic activation²⁰.

What is the maximum time period to transfer the device from work-station to the LN₂ storage tank?

After loading of the oocyte(s) or embryo(s) on the cryodevice and removal of the excess cryoprotectant, the cryodevice is immediately plunged into a box containing LN_2 . As long as the cryodevice remains immersed into LN_2 at all times, the device can be transferred to the main LN_2 storage tank without any rush. However, care must be taken not to prolong this in order to avoid the excessive evaporation of LN_2 from the styrofoam box, and the inadvertent warming of oocytes/embryos.

How many oocytes/embryos can be vitrified on one device?

Different carrier devices specify different maximal capacity of oocytes/embryos that can be loaded on the device. Roughly, up to 3-4 oocytes can be loaded on a single cryodevice, while up to 2-4 embryos can be loaded on different cryodevices according to the manufacturer's recommendations. However, there is a move towards loading 1 or maximally 2 embryos on a single device so as to facilitate single embryo transfer and avoid the unnecessary re-vitrification associated with warming and survival of 3 or 4 embryos warmed from a single device, and the supernumerary embryos left after single embryo transfer.

What are the risks involved with oocyte/embryo vitrification?

The process of cryopreservation is associated with inadvertent cryodamage to various cellular organelles (Table 5).

Table:5. Cellular freezing and cryodamage ²¹

Cellular Structure	CRYODAMAGE
Nucleus	Cryopreservation can affect the structural integrity of the nuclear envelope & affect DNA replication and transcription.
Microfilaments	Microfilaments are uniformly organized in a layer enveloping the cortex in human oocytes and play an important role during oocyte maturation esp. polar body extrusion, pronuclear migration, intracellular movement of organelles and cell division. These processes may be perturbed by cryopreservation.
Microtubules	In oocytes and blastomeres, the major microtubular structure is the meiotic spindle which is responsible for spatial organization and migration of chromosomes during meiotic and mitotic divisions. Damage to this microtubular network may lead to altered chromosome complement within the cell, and ultimately aneuploidy.
Mitochondria	Mitochondrial swelling & abnormal distribution has been noted following cryopreservation.
Zona pellucida	Cryopreservation may lead to premature cortical granule exocytosis and subsequent zona hardening.

There are various kinds of cryoinjuries which the oocytes/embryos incur while undergoing cryopreservation.

Table:6. Various types of cryo-cellular injuries ²¹

Type of injury	OUTCOME
Chilling injury (-5 to -50°C)	Irreversible damage to cellular structures – lipid droplets, proteins, membranes and microtubules. Different mammalian species and different developmental stages of oocytes contain varying amounts of lipid & thus varying sensitivities to chilling injury.
Osmotic shock during equilibration (-5 to -50°C)	Osmotically driven water efflux that occurs in the cells during freezing is responsible for causing rupture of plasma membrane, and leading to extracellular ice entering the cytoplasm.
Zona pellucida hardening	Premature cortical granule exocytosis due to cryopreservation may cause zona hardening, and this situation in case of oocytes may be circumvented by the use of ICSI.
Fracture injuries (-50°C to -150°C)	Zona fracture is a known consequence of cryopreservation and is observed both in oocytes and em- bryos. Fracture injuries are more common with the use of closed systems than open systems, as open systems use extremely small volumes of CPA and there is avoidance of mechanical forces associated with extreme pressure changes as observed with closed systems.
Safe zone (-196°C)	All cellular activity is suspended at this temperature as there is complete cessation of atomic and molecular movement. The only potential risk of DNA degradation is from background terrestrial radiation levels (0.1 centigray/year) which are too low to harm the stored tissue.

3 What are the indications and advantages of oocyte/embryo freezing?

INDICATIONS FOR OOCYTE CRYOPRESERVATION

- In cases following oocyte retrieval where the male partner is unavailable/unable to produce semen sample
- To circumvent the ethical and legal concerns associated with embryo freezing
- Women who wish to delay childbearing
- Oncofertility patients who are due to receive chemotherapy and/or radiation therapy for malignancy prior to commencement of treatment
- Oocyte cryobanking for oocyte donation programs
- Patients at risk of premature ovarian failure
- Better synchronization of donor-recipient cycles
- Cryoaccumulation (Accu-vit) strategy for poor responders

INDICATIONS FOR EMBRYO CRYOPRESERVATION

- Supernumerary embryos left after transfer of selected embryos in a fresh cycle
- Avoiding fresh embryo transfer in stimulated cycles in patients at risk of OHSS, elevated progesterone, thin endometrium, fluid in the endometrial cavity on day of transfer, polyps detected incidentally following stimulation, bleeding and difficult embryo transfers.
- Blastocyst cryopreservation following trophoectoderm biopsy for PGS/PGD.

ADVANTAGES OF VITRIFICATION

- The timing of the whole cryopreservation procedure is greatly reduced with vitrification as compared to conventional slow freezing
- Vitrification involves the use of high concentrations of CPA which allows shorter exposure times to the CPA
- Minimal volume used for vitrification increases the probability and rate of freezing
- Vitrification eliminates intracellular ice crystal formation and avoids lethal cellular injury
- It is associated with minimal osmotic injuries
- The protocols for vitrification are simple, easy to use, and do not require any expensive equipment like programmable freezer used for slow freezing

14 What is Leidenfrost effect?

Leidenfrost effect is a physical phenomenon in which a liquid that is in near contact with a mass significantly hotter than the liquid's boiling point, produces an insulating vapour layer that keeps the liquid from boiling rapidly. Due to this repulsive force, the droplet hovers over the surface rather than making physical contact with it (*Fig.1*).

The vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen ²². The vapour layer formed around the specimen in effect insulates it from the cold liquid nitrogen.

The Leidenfrost effect can be reduced by decreasing the temperature of LN_2 to -210°C, hence eliminating vapour formation and achieving even higher cooling rates.

Figure-1 Leidenfrost effect

What is the most important step in vitrification? What should be the time permitted to move the carrier device from LN₂ to the thawing solution?

The seminal work of Peter Mazur and his colleagues has shown that the cryosurvival of oocytes and embryos depends almost entirely on the warming rate ²³. The faster the warming rate, higher the survival. Rapid warming is essential to minimize both the formation of intracellular ice crystals by devitrification and their growth to lethal size by recrystallization ²⁴. Rapid warming involves abrupt transfer of the carrier device from under the LN₂ to the thawing solution within under a second (without any brief intermediate hold in air).

6 How long can we cryopreserve gametes and embryos?

It is currently unknown what the maximum storage period might be for oocytes and embryos. Cryopreservation of human gametes and embryos has been around since 1980's, and this implies that the longest time that a human embryo has been stored is 25-30 years. Patients that have cryopreserved their gametes and embryos this long back are unlikely to return and request these embryos to be used. Live births have been reported from frozen human sperm stored for 40 years ²⁵. Similarly, successful live births have been reported from oocytes stored for more than 14 years in cryopreservation ²⁶, and from embryos frozen over 20 years ago.

7 How has the technique of cryopreservation progressed on from slow-freezing of oocyte and embryos to vitrification?

The earliest pregnancy from frozen thawed human embryos was reported by Trounson in 1983 ²⁷, followed closely by the first live birth in 1984 by Zeilmaker et al ²⁸. Similarly, the first pregnancies resulting from frozen oocytes were reported in 1980s, but this was followed by a quiet period with only sporadic case reports ²⁹. While most of the ART laboratories were using slow-freezing for gametes and embryos with mixed results and a subpar post thaw survival, a lot of research was carried out by various groups in the field of vitrification as an alternative technique to slow-freezing for cryopreservation. Mukaida et al. reported the first successful vitrification of human 4-8 cell embryos based on the methods developed for murine embryos ³⁰ and this was confirmed by other groups as well. With the standardization of protocols, vitrification has been adopted by almost all the clinics worldwide as the standard method for oocyte and embryo vitrification. Successful vitrification of human oocytes was first described by Kuleshova et al in 1999, and though the results of oocyte vitrification are far superior to slow-freezing, the number of live births following embryo vitrification far exceeds those following oocyte vitrification.³¹

18 What are the differences between vitrification of oocytes, embryos and blastocyst?

The vitrification protocols for cryopreservation of oocytes and blastocysts differ from those for preserving cleavage-stage embryos, and this is reflected in the differences in the equilibration time for the oocytes, embryos or blastocysts.

Peculiarities of OOCYTE vitrification

- 1. The mature human oocyte is the largest cell in the body (120 μ m, ooplasm measuring around 100 μ m and zona thickness around 16-18 μ m). Its surface area to volume ratio is around 0.05 (surface area: 4.5 x 10⁴ μ m²; volume: 9 x 10⁵ μ m³). This, along with the fact that the oocyte is spherical in shape, accounts for poor permeation of CPAs due to lower surface area, as compared to a cell like spermatozoa.
- 2. The metaphase II oocyte possesses a temperature sensitive meiotic spindle which is crucial for events following fertilization in the completion of meiosis, second polar body extrusion, pronuclei migration, and the formation of first mitotic spindle. This spindle is susceptible to depolymerization following vitrification-warming procedure, and this may compromise the ability of the oocyte to undergo fertilization and normal preimplantation development.
- 3. The mature oocytes possess an actin scaffolding and regulatory secretory granules called cortical granules, that are synthesized in the centre of the oocyte but translocate to the plasma membrane during meiosis in preparation for fertilization. Following fertilization, a signaling pathway induces these granules to fuse with the oolemma and release their content in to the oocyte's extracellular matrix. However, during vitrification, these cortical granules may undergo premature exocytosis and consequently, zona hardening. This issue can be circumvented by the routine use of ICSI for vitrified warmed oocytes.
- 4. Finally, the oocyte is a single cell in contrast to the cleavage-stage embryos (composed of blastomeres) or blastocysts (containing numerous inner cell mass and trophoectodermal cells). Hence, the result of vitrification-warming in terms of cryosurvival is all or none.

Peculiarities of BLASTOCYST vitrification

1. Unlike oocytes and cleavage-stage embryos, the blastocyst possesses a blastocoel cavity which is a fluid-filled cavity formed after cavitation. Since the basic premise of vitrification is the gradual dehydration of cellular contents, the presence of a blastocoel cavity is a deterrent to the process of vitrification. Some groups advocate the artificial collapse of the blastocoel cavity prior to vitrification by either the application of LASER pulse, manual pipetting through narrow bore pipettes or by mechanical collapse using an ICSI or a PZD pipette. The safety of these artificial shrinkage methods has been well demonstrated. A study by Wang et al. showed that the differences in the blastocyst survival rate were comparable between the LASER assisted shrinkage (LAS) and the micro-needle assisted shrinkage (MNAS) groups. However, LAS was found to be associated with increased implantation and clinical pregnancy rate, live birth rate, but also a significantly higher rate of monozygotic twinning ³².

However, now, there are various protocols that avoid the issue of blastocoel collapse by increasing the equilibration time e.g. Kitazato, Cryotech etc.

2. In contrast to the cleavage-stage embryos where the post warming morphology gives a rapid and clear impression of the cryosurvival, in case of blastocysts the immediate post warming morphology may not be unambiguous. Hence, it is recommended to culture the blastocysts for 1-2 hours post warming to allow for re-expansion and a better morphological assessment.

- 3. The results with day 5 vitrification may depend on the degree of blastocyst expansion, and a recommended size of blastocysts amenable to vitrification with consistent survival rates is between 170 to 220 μm.
- 4. It is also argued that day 3 embryo vitrification is associated with a higher cumulative pregnancy rate as there are fewer embryos that reach the blastocyst stage, and can be vitrified.

9 What magnification do we work at when vitrifying oocytes or embryos?

The working magnification while carrying out oocyte or embryo vitrification is subjective. However, working at lower magnifications $[(0.8 - 1.2 \text{ X}) \times 10 \text{ X} \text{ eyepiece}]$ is preferable since if more than one oocyte or embryo is put in the equilibration or vitrification solution, it is easier to track them in lower magnification, and the risk of losing any oocytes or embryos in the vitrification solution is minimal. This should be noted as the oocytes/embryos have a tendency to float when moved from equilibration to vitrification solution, and may temporarily disappear on visual inspection. However, a lower magnification helps to avoid this problem. It is also easier to load the oocytes/embryos on the carrier device in lower magnification. However, the degree of collapse and re-expansion is best assessed by changing to a higher magnification temporarily.

20 What is the role of vitrification in ovarian tissue cryopreservation?

Though vitrification is now the method of choice for cryopreservation for gametes and embryos, less is known about its performance in ovarian tissue cryopreservation, for which slow-freezing is the current convention. A recent meta-analysis of 14 studies suggested that vitrification may be more effective than slow-freezing, with less primordial follicular DNA strand breaks and better preservation of stromal cells³³. Hence, vitrification may result in improved ovarian function after transplantation. To avoid the cryoprotectant associated toxicity which is the chief concern while using vitrification, relatively low concentrations of different cryoprotectants can be combined. However, more research is required to optimize the protocols for ovarian cortical vitrification.

Z Can the technique of vitrification be used for sperm cryopreservation?

During cryopreservation, the cooling and warming processes during slow and rapid freezing associated with the intermediate zone of temperature (-10 to -60°C), which the cells must traverse twice (once during cooling and then during warming), can be lethal to the sperm. Vitrification does not require either the use of specially devised cooling programs or CPAs, and is much faster, simpler and cheaper. The method is based on cooling of sperms by direct immersion into LN_2 , thereby avoiding intracellular ice crystal formation. Optimal cooling rates are obtained with the following specifically designed packaging systems: Open pulled straws, the Flexipet denuding pipette, micro- drops, electron microscope copper grids, the Hemi-straw system, Cryotop, Cryoleaf, Cryotip and other carrier devices. Another modification of vitrification is direct dropping of spermatozoa suspension in LN_2 .

22 What are some tips to optimize vitrification results

Foremost, strict adherence to the manufacturer's guidelines, protocols and time duration is extremely important.

Fig.1a: Example of vitrification protocol from one of the manufacturers (Kitazato Dibimed) with step by step description of each process and recommended times for equilibration and vitrification solutions.

Fig.1b: Vitrification and warming kits from various manufacturers.

Fig.1c: Vitrification carrier devices from various manufacturers

Fig.1d: Locking mechanisms of different carrier devices.

Fig.1e: Differences in the outer protective sheath with different identification labels to facilitate easier manipulation under liquid nitrogen.

Fig.1f: Loading surfaces of different carrier devices.

Fig.1g: A dedicated Medical grade refrigerator to store the vitrification and warming media.

Pre-freezing embryo morphology is a strong predictor of post warming cryosurvival. Hence, only grade A embryos should be vitrified. For oocytes, the timing of vitrification is important, and oocytes must be vitrified after 2-4 hours of incubation after retrieval, and immediately after denudation.

Fig 2a: A day-3 6-cell grade A embryo with less than 10% fragmentation.

Fig 2b: Mature metaphase 2 oocytes should be selected for vitrification for optimal outcome.

3

Regarding blastocyst vitrification, some protocols advocate the collapse of blastocoel cavity prior to vitrification, while others do not. The protocol should be strictly followed and tweaking or deviation from the protocol is not recommended.

It is recommended that a pipette with an inner diameter of 140-150 μm be used for the oocyte. Likewise, pipettes of optimum diameter should be used for embryos and blastocysts.

Fig.4a: Denudation pipettes with stripper handles of various sizes.

Fig.4b: Stripper handles from different manufacturers.

Fig.4 c&d: Cryoinjuries in the form of zona rupture and blebbing of oolemma.

Fig.4e: Manipulation of oocyte/embryo in equilibration and vitrification solutions

The vitrification process should be carried out at room temperature (unless specified otherwise). Similarly, the warming process (first step) should be carried out at 37°C (unless specified otherwise).

Fig 5a: Preparation of drops of equilibration and vitrification solution.

Fig 5b: Use of specified media volumes (300 μ l) for equilibration and vitrification solutions in specially designed repro/vitriplates

Before commencing vitrification, all the solutions should be brought to room temperature at least 1 hour before starting.

Similarly, before commencing warming, the thawing solution should be incubated to 37°C at least 2-3 hours before use (varies according to protocol followed). Some protocols recommend overnight incubation.

Fig.7a&b: Thawing solution (TS) being warmed to 37°C at least 1 hour prior to use.

Fig.7c: Do not keep TS at room temperature or for periods longer than intended use as it may cause media evaporation and sudden shifts in osmolality.

8

Patient identification is of utmost importance. Hence, the cryo devices should be clearly labelled with 2 unique identifiers, and once vitrification is completed and the device is stored in the cryotank, the location of the device including the number of oocytes/embryos vitrified and the media and carrier device used should be clearly documented in records.

Fig.8a: Proper labelling of the cryodevice with 2 unique patient identifiers.

Fig.8c: If the devices are not marked properly or marked with sub quality pens the writing comes off and it is difficult to identify the device later at the time of warming.

Fig.8b: Proper labelling of the aluminium cryocanes for easier identification of the location of carrier devices.

Fig.8d: If the aluminium Cryocanes are not marked properly or marked with sub quality pens the writing comes off and it is difficult to identify the device later at the time of warming.

Fig.9 a&b : There should be at least 1 assistant to keep note of time and to assist during the vitrification and warming steps.

During vitrification, after loading the embryos from the vitrification solution on to the carrier device and removal of excess CPA, the device should be immediately immersed into LN_2 . Similarly, while warming, the cryodevice should be moved from LN_2 to the thawing solution under one second with one swift motion.

Fig.10a : Figure showing carrier device with embryos and excess media.

Fig.10b : Embryos in minimal media.

Fig.10c : Loading of oocytes/embryos on the cryodevice with an appropriately sized pipette.

Fig. 10d : Rapid immersion of the carrier device into liquid nitrogen.

Fig. 10.e&f: The fig. shows adequately filled styrofoam box. Second is our innovation to save loss of liquid nitrogen during the procedure as lid can be place over the box safely.

Fig. 10g: Placing the carrier device into a visotube attached to a cryocane.

11 During the first step of warming, care should be taken that the entire tip of the loading surface of the carrier device should be immersed in the thawing solution, and no bubbles should be created.

Fig 11a&b: Care should be taken while warming that the entire loading surface of the carrier device should be immersed into the thawing solution and attempts should be made to minimize making bubbles.

During warming, usually the embryos float when the device is immersed in the thawing solution. However, if the embryos remain on the surface of the carrier device, they should not be manipulated by sucking through the manipulation pipette. Rather, some media should be taken into the pipette and gently sprayed over the embryos to detach them from the device.

Fig 12 a&b : It should be made sure that the entire loading surface is submerged under the thawing solution, and not just the tip of the carrier device.

13

Though classically 2-4 embryos have been loaded per carrier device, now it is recommended that no more than 2 embryos be stored per carrier device.

The recommended volumes of vitrification and warming solutions should be used as any deviation from the volume will alter the osmolality of the solution and is detrimental.

The journey of an Embryo from Cryocan to Womb

REFERENCES

- 1. Talwar P, Sareen S. Overview of cryobiology in ART. JSAFOG, Jan-April 2010; 2 (1): 11-17
- 2. Paoli D, Lombardo F, Lenzi A et al. Sperm cryopreservation: Effects on chromatin structure. In Baldi E, Muratori M, eds. Genetic Damage in Human Spermatozoa. Newyork, NY: Springer, 2014.
- 3. Ali J, Shelton JN. Design of vitrification solutions for the cryopreservation of embryos I Reprod Fertil 1993; 9; 471-7
- 4. Cho HJ, Son WY, Yoon SH et al. An Improved protocol for dilution of cryoprotectants from vitrified human blastocysts. Hum Reprod 2002;17;2419-22.
- 5. Mukaida T Nakamura S, Tomiyama T et al.Successful birth after transfer of vitrified human blastocysts with use of a cryoloop containerless technique.Fertil Steril 2001;76;618-20
- 6. Kuwayama M, Vajta G,Kato O et al.Highly efficient vitrification method for cryopreservation of human oocytes .Reprod Biomed Online 2005;11;300-8.
- 7. Debrock S, Peeraer K, Fernandez Gallardo et al. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing. Hum Reprod 2015; 30 (8): 1820-30.
- 8. Fasano G, Fontenelle N, Vannin A et al. A randomized control trial comparing two vitrification methods versus slow-freezing for cryopreservation of human cleavage stage embryos. J Assist Reprod Genet 2014. 31 (2):241-47.
- Wang X, Xiao Z, Yao-qin Q et al. Outcomes of day 3 embryo transfer with vitrification using Cryoleaf: a 3-year follow-up study. J Assist Reprod Genet. 2012;29:883–9
- 10. Rama Raju GA, Jaya Prakash G, Murali Krishna K et al. Neonatal outcome after vitrified day 3 embryo transfers: a preliminary study. Fertil Steril. 2009;92:143–8.
- 11. Balaban B, Urman B, Ata B et al. A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blasto- cyst formation. Hum Reprod. 2008;23:1976–82
- 12. Al-Hasani S, Ozmen B, Koutlaki N. Three-year experience on routine vitrification of human zygote: is it still fair to advocate slow rate freezing? Reprod Biomed Online. 2007;14:288–93.
- 13. Dozortsev D, Nagy P, Abdelmassih S et al. The optimal time for intracytoplasmic sperm injection in the human is from 37 to 41 hours after administration of human chorionic gonadotropin. Fertil Steril 2004; 82: 1492–6
- 14. Chi F, Luo C, Yin P et al. Vitrification of day 3 cleavage-stage embryos yields better clinical outcome in comparison with vitrification of day-2 cleavage stage embryos. Zygote 2015, Apr 23 (2): 169 -176
- 15. Kahraman S, Candan Z N. Outcomes of vitrified-warmed day-4 embryos after day-3 cleavage biopsy. Reprod Biomed Online 2010. 21 636-641
- 16. Ciotti P. M, Porcu E, Notarangelo L, Magrini O, Bazzocchi A and Venturoli S (2009). Meiotic spindle recovery is faster in vitrification of human oocytes compared to slow freezing. Fertil Steril 91 (6), 2399-2407
- 17. Riggs R, Mayer J, Dowling-Lacey D, Chi TF, Jones E, Oehninger S. Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11, 768 cryopreserved human embryos. Fertil Steril 2010. Jan; 93 (1): 109-15
- 18. Wirleitner B, Vanderzwalmen P, Bach M, Baramsai B, Neyer A, Schwerda D et al. The time aspect in storing vitrified blastocysts: its impact on survival rate, implantation potential and babies born. Hum Reprod 2013. 28 (11); 2950-57
- Mullen SF, Fahy GM. Fundamental aspects of vitrification as a method of reproductive cell, tissue and organ cryopreservation. In Donnez J, Kim S (eds.), Principles & Practice of Fertility Preservation. Cambridge University Press: Cambridge, 2011. P. 145-63.
- 20. Szurek EA, Eroglu A. Comparison and avoidance of toxicity of penetrating cryoprotectants. PLoS One. 2011; 6 (11): e27604
- 21. Talwar P, Prakash V. Clinical applications of vitrification. In Allahbadia G, Kuwayama M, Gandhi G (eds.), Vitrification in assisted reproduction. Springer, 2015. P. 51-64.
- 22. Song YS, Adler D, Xu F et al. Vitrification and levitation of a liquid droplet on liquid nitrogen. PNAS, 107 (10); 4596-4600
- 23. Seki S, Mazur P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 2009 Aug; 59 (1): 75-82.
- 24. Seki S, Mazur P. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 2008. Oct; 79 (4): 727-737.
- 25. Szell AZ, Bierbaum RC, Hazelrigg WB et al. Live births from frozen human semen stored for 40 years. J Assist Reprod Genet. 2013 Jun; 30 (6): 743-44.
- 26. Urquiza MF, Carretero I, Carabajal PRC et al. Successful live birth from oocytes after more than 14 years of cryopreservation. J Assist Reprod Genet. 2014 Nov; 31 (11): 1553-1555.
- 27. Trounson Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983; 305: 707-9.
- 28. Zeilmaker GH, Alberta AT, Gent Van I et al. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984; 42: 293-6.
- 29. Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986; 1: 884-6.
- 30. Mukaida T, Wada M, Takahashi K et al. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 1998 Oct; 13 (10): 2874-9
- Kuleshova L, Gianroli L, Magli C et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999 Dec; 14 (12): 3077-9.
- 32. Wang C, Feng G, Zhang B et al. Effect of different artificial shrinkage methods, when applied before blastocyst vitrification, on perinatal outcomes. Reprod Biol Endocrinol 2017 Apr 26; 15 (1): 32
- 33. Shi Q, Xie Y, Wang Y et al. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-analysis. Sci Rep 2017 Aug 17; 7(1): 8538.

Index

S.NO.	ТОРІС	PAGE NO.
1.	Comparative analysis of different Cryo- devices from different OEM	25
2.	Differences between Reproplate and Vitriplate	28
3.	Commercially available Cryo- devices	29
4.	Composition of Vitrification and Warming media from different OEM	38
5.	Commercially available media kits	42
6.	Description of vials available in Vitrification and Warming kits	47
7.	Vitrification protocol for different OEM	49
8.	Warming protocol for different OEM	54

Table-7 :. Comparative analysis of different Cryo- devices from different OEM

REMARKS	Maximum load is 2-3 oocytes with minimum media volume <1 μl Open system vitrifica- tion carrier for maximum cooling Easy handling & efficient storage Small surface available for labelling.	Maximum specimen loading is 3 with minimal volume of media (<1µl) (use black mark as reference for loading) Concave tip have a loading guidance guidance Cap has a dark ring to ease assembly
LABELING / PATIENT ID	Patient ID is labelled on outer cover	Long flat sur- face provided on VitriFit TM for recording patient ID
OĐOT	McGill Cryoleaf TM on carrier straw for orientation of loading surface Red marking for LN ₂ level on the sleeve.	ORIGIO is engraved on handle for the orientation of loading surface Flat surface having orientation mark at the top indicates concave side up.
COLORS	Green	Clear Blue Green Yellow
LOCK	Rotating lock	Plug in lock
LOADING SURFACE	Flat loading surface	Curved concave loading surface
HANDLE	Circular handle (made up of polypropylene)	Hexagonal Handle This shape allows VitriFit- TM carrier to be packed tighter during storage than popular vitrification carriers. And improved storage effi- ciency by up to 50 %
COMPONENTS OF DEVICES	3 parts Carrier straw Protective sleeve (green) to protect oocytes over the tip & lock it by turning Outer cover	2 parts Body Both body and Cap Both body and cap made up of same material and are designed for a perfect fit at all temperature.
TYPE OF DEVICE	Open device (oocytes / embryo are in direct contact with LN ₂)	Open device
DEVICE	Mc Gill Cryoleaf TM (REF : 40771401)	VitriFit TM (REF : 42802 001A)

REMARKS	Consistent sub-micro litre volume of media and mini- mised risks of unintentional warming Minimum thermo insula- tion around the droplet & embryo. Simple design and easy handling. Avoid over filling the hole or else the embryos may float out. Metal weight at the bottom keeps the Rapid-i TM in place by the magnets in the Smart Box TM and storage tank.	Best cooling and warming rates (-23000 °C /min) & (42000°C/min) respectively which in turn lead to 90% survival rates. Valid for all stage of devel- opment: oocytes, embryos, blastocysts. Allows upto 4 specimen to be loaded per device with a minimum volume of media (0.1 µL)
LABELING / PATIENT ID	Label the rapid straw with the Patient ID between the 2 black marks on the rapid straw.	Patient ID is labelled on the handle/ straw cap of Cryotop ^R
0901	Logo is not engraved on device. Black Indicators at bot- tom to help keep the embryo in safe zone Red Markings at top to visualize where to cut (approximately 30mm above the red mark) The lowest black mark of rapid straw must always be immersed in LN ₂ The other edge of the Rapid-i TM is marked black to increase the visibility under LN ₂	KITAZATO/Cryotop ^R is engraved on the flattened area of han- dle for the orientation of loading surface. Black marking on external covering sig- nifies the LN_2 level Black marking on fine strip is loading guidance
COLORS	Blue Green Yellow Red White	Yellow White Green Blue Pink
LOCK	Ultrasonic sealing using ultrasonic sealer. Make sure that the seal covers the entire diameter of the rapid straw and that no holes / defects are present	Plug-in lock
LOADING SURFACE	30 nano - litre load- ing hole at the tip of the straw, designed to produce surface tension to make loading of device easy.	0.4mm wide, 20mm long and 0.1mm thick fine strip of transparent film Made up of poly- propylene attached to a plastic handle
HANDLE	No handle	Plastic handle Manufactured in malleable plastic resistant to LN ₂
COMPONENTS OF DEVICES	 80 mm stick made from polymethyl methacrylate (Rapid-iTM) 130 mm thermoplastic elastomer storage straw equipped with a stainless steel weight (Rapid straw) 115mm stainless steed in Rapid straw 	2 parts Body Cap To protect the Cryotop ^R once vitrified. Tip with weight to prevent floating in LN ₂
TYPE OF DEVICE	Closed device device Oocytes / embryos are not in direct contact with LN ₂ , therefore lowering the chances of cross contam- ination.	Open device
DEVICE	Rapid-i TM Kit (REF : 94419)	Cryotop ^r (REF : 81113)

•••••

REMARKS	Maximum 2 specimen can be loaded per device Traceability by colour coding and LN ₂ resistant labels for easy storage and identification To properly seal HSV straws, the right combination of heat, pressure, time and position of the straw must be guaranteed. CryoBio system has validated this for SYMS , SYMS II, SYMS III.	Wide labelling surface for clear identification Maximum loading of 2 spec- imens for vitrification with a minimum volume of media ($\leq 1 \mu$ l) Body & cap have gaps on their extremes that allow easy grip with forceps during manipu- lation Secure, hermetic seal keeps tip isolated from LN ₂ Cooling and warming rates (\approx -1494 °C/min)) and (\approx +21000°C/min)) respectively. Cryolock TM vials are sterilized by gamma radiation
LABELING / PATIENT ID	Patient ID is labelled ap- proximately 20mm from the flared end of the straw. When labelled this way, it does not cover the entirely of the coloured rod or the biolog- ical sample zone.	Patient ID is labelled on same surface where Cryo- lock TM logo is engraved.
10G0	CryoBio Sys- tems is engraved on blue plastic insertion device for orientation of loading surface	Cryolock TM is en- graved on handle for orientation of loading surface. Also patient ID is to written on same surface. Black mark on tip is used as refer- ence.
COLORS	Yellow White Red Blue Purple Green	Green Yellow Orange White Blue
LOCK	Heat sealing using SYMS sealer	Plug-in lock
LOADING SURFACE	Curved (concave loading surface)	Curved (concave loading surface) Concave tip allows secure loading ofembryos and isola- tion against displace- ment of the samples during closing
HANDLE	No handle	Handle made of polysty- rene medical grade.
COMPONENTS OF DEVICES	3 parts High security ultra thin ionomeric resin straw hav- ing pre-sealed weighted end and flared opening (40 mm length) A capillary tube with a pre-formed fully clear gutter co-injected with its coloured identification rod. A blue plastic insertion and removal device	2 parts Body A square shape stick (4.56" length, 0.118" width and 0.118" height) Made up of polystyrene medical grade with curved loading surface loading surface Cap 1.78" length, 0.118" width and 0.118" height Made of same material Provides an air tight seal by coupling of two tapered surfaces in a 0.250" sealing surface and even tempera- ture conduction at low temperatures.
TYPE OF DEVICE	Closed device (high security closed system)	Open device
DEVICE	HSV Kit (REF: 025463)	Cryo lock TM (REF: CL-R-CT)

.

.

REMARKS	 Improved version which leads to 100% survival rate. Endotoxin free, simple and reliable use. Can be used for all stages of development. f Cooling rates of 24,000 and 1,500 °C/min in open and closed systems respectively; and 43,000 °C/min warming speed. 		PLATE		
LABELING / PATIENT ID	Three fla sides of th handle aru available for clear labelling o patient ID		E & WARM		
0901	CRYOTECH* logo engraved on one of the faces of the handle on the recommended loading side. Black triangle mark on the loading filmstrip for loading and covering ease. Black mark on the upper of the cap to ease recognition under liquid nitrogen.	proplate and Vitriplate	VITRIPLAJ	1000	
COLORS	Red, Blue, Green, Yellow, White	ween Rej		P	
LOCK	Open System: Plug-in lock Closed System: heat seal	ces bet			
LOADING SURFACE	Transparent PET filmstrip 1.0 mm wide, 20 mm long and 0.075 mm thick Triangle black mark at the tip for recognition of loading side and easy view inside the liquid nitrogen.	Table-8 : Differen	ole-8 : Differer		
HANDLE	Plastic handle resistant to liquid nitrogen		КТЕ		
COMPONENTS OF DEVICES	 Plastic body with an attached filmstrip (20mm long) and 30mm long plastic cap with a metal barrel at the opposite tip to prevent floating, and a plastic seal to avoid liquid nitrogen flow. 		REPROPLA		
TYPE OF DEVICE	Open and closed device				
DEVICE	Cryotech				

Dibimed
Kitazato
l by
unufactured
Mâ

Reproplate has 6 wells, and can be used for either vitrification or warming.

The wells of reproplate are comparatively more conical.

The wells of vitriplate are comparatively more rounded.

Vitriplate (3 wells) & warming plate (3 wells and a TS well) by Cryotech are separate, and are

used for the respective steps.

Manufactured by Cryotech Reprosius

The TS well of warming plate has a slope to facilitate the immersion of the device.

Vitriplate: Has a groove to hold the carrier device.

Reproplate: Does not have a groove to hold the carrier device.

ī

Table-9: Commercially Available Cryo - Devices

1. MC GILL CRYOLEAF™ Image: Strain Strain

HANDLE

Circular handle made up of Polypropylene

LOCK

Rotating lock

The tip of McGill CryoleafTM is protected by sliding the green sleeve over the tip and locking it into place by turning.

LOADING SURFACE

Flat loading surface

2.	VITRIFIT TM
	olão 🖉

VitriFit[™] is an open device

It has 2 parts: Body Cap

Both body and cap made up of same material and are designed for a perfect fit at all temperature.

Cap has a dark ring to ease assembly

HANDLE

Hexagonal Handle

Hexagonal shape allows VitriFitTM carrier to be packed tighter during storage than popular vitrification carriers and improved storage efficiency by up to 50 %

LOADING SURFACE

Curved i.e. concave loading surface for specimen protection and to ease loading and removal of excess medium.

Concave tip have a black loading guidance.

LABELLING SURFACE

Long flat surface provided on VitriFitTM for recording Patient ID

Rapid-iTM Kit is a **closed** device which means oocytes/ embryos are not in direct contact with LN_2 , therefore lowering the chances of cross contamination.

It has 3 parts:

80 mm stick made from Polymethyl methacrylate (Rapid-i[™])
130 mm thermoplastic elastomer storage straw equipped with a stainless steel weight, (Rapid straw)
115 mm stainless steel rod inserted in Rapid straw

INSERTER

No handle but it has an inserter to insert the Rapid- $i^{\mbox{\tiny TM}}$

LOCK

Ultrasonic sealing using ultrasonic sealer, meaning no heat is emitted to the straw and the specimens remains safe.

LOADING SURFACE

30 Nanolitre loading hole at the tip of the straw, designed to produce surface tension to make loading of device easy.

LABELLING SURFACE

Label the rapid straw with the patient **ID between the 2 black marks** on the rapid straw.

Red marking for LN₂ level on the sleeve.

4. $CRYOTOP^{R}$

Cryotop^R is an **open** device

It has 2 parts: Body Cap (to protect the Cryotop^R once vitrified. Tip with weight to prevent floating in LN_2)

LOCK

Plug-in lock with a black marking for LN_2 level.

LOADING SURFACE

Loading surface is a **0.4 mm wide, 20 mm long and 0.1 mm thick** fine strip of transparent film made up of Polypropylene attached to a plastic handle.

LABELLING SURFACE

Patient ID is labelled on the handle/straw cap of Cryotop^R.

HSV (High Security Vitrification) is a Closed device

It has 3 parts:

High security ultra thin **ionomeric resin straw** having pre-sealed weighted end and flared opening (**40 mm length**)

A **capillary tube** with a pre-formed gutter co-injected with its coloured identification rod.

A blue plastic insertion and removal device

INSERTION REMOVAL DEVICE

No handle but it has an insertion and removal device.

LOCK

Thermal sealing using SYMS sealer

It is a **benchtop unit** that can be used under a laminar flow cabinet. It **uses a thermal process** to seal CBSTM High Security 0.3 ml, 0.5 ml and 2 ml straws, CBSTM High Security tubes as well as HSV High Security Vitrification straws.

It consists of: Protective cover Touch screen Presence sensor Product support ON/OFF switch and USB port

LOADING SURFACE

Curved i.e. concave loading surface

02701

$6. CRYOLOCK^{TM}$	
CONCOCCE DEEPAK NUMAR	 Cryolock[™] is an open device It has 2 parts: Body: A square shape stick (115.8 mm length, 2.794 mm width and 2.794 mm height) made up of Polystyrene medical grade with curved loading surface. Cap: A square shape cap (45.212 mm length, 2.794 mm width and 2.794 mm height) made of same material.

HANDLE

Square handle made of **Polystyrene** medical grade and CRYOLOCKTM is engraved on it for orientation of loading surface.

LOCK

Plug-in lock

LOADING SURFACE

Curved i.e. concave loading surface with a black loading guidance.

Concave tip allows secure loading of embryos and isolation against displacement of the samples during closing.

LABELLING SURFACE

Patient ID is labelled on same surface where CryolockTM logo is engraved.

7. CRYOTEC

Cryotec is an Open device.

It has 2 parts:

Body

Cap (inside cap there is a balancer ball)

HANDLE

Long and wide handle.

CRYOTEC* is engraved on handle for orientation of loading surface.

LOCK

Plug-in lock

LOADING SURFACE

Fine, thin film loading surface slightly cut from edge with a black loading guidance.

LABELLING SURFACE

Patient ID is labelled on the cap and handle (on same surface where $Cryotec^*$ is engraved.)

Table-10 : Composition of Vitrification & Warming Media from Different OEM

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	MEDIA	COMPOSITION	BASIC COMPOSITION
		Vitrifica	ation Media	
		Basic Solution (BS) Equilibration Solution (ES)	Ethylene Glycol Dimethyl Sulfoxide (DMSO) Trehalose	
1.	KITAZATO		•	HEPES with Basic Culture Media
		warm	ing media	
		Thawing Solution (TS)	Ethylene Glycol	
		Diluent Solution (DS)	Dimethyl Sulfoxide Trehalose	
		Washing Solution (WS)		
		Vitrifica	ation media	
		Equilibration Solution (ES)	7.5% (v/v) Dimethyl sulphoxide 7.5% (v/v) Ethylene Glycol Human Albumin (12mg/ml)	
2.	SAGE (ORIGIO)	Vitrification Solution (VS)	15% (v/v) Dimethyl sulphoxide 15% (v/v) Ethylene Glycol Human Albumin (12mg/ml) 0.6 M Sucrose	It is a MOPS buffered solution of modified HTF containing : Essential amino acids Non-essential amino acids
		Warm	ing media	Gentamicin Sulfate (0.01g/L)
		1.0 M Sucrose Warming Solution	Human Albumin (12mg/ml) 1.0 M Sucrose	
		0.5 M Sucrose Warming Solution	Human Albumin (12mg/ml) 0.5 M Sucrose	
		MOPS Solution	Human Albumin (12mg/ml)	
		Vitrifica	ation media	
		Equilibration Solution (ES)	Ethylene Glycol DMSO Hydroxy Propyl Cellulose	
3.	CRYOTECH	Vitrification Solution (VS)	Trehalose Ethylene Glycol DMSO Hydroxy Propyl Cellulose	Modified HEPES Buffered MEM
		Warm	ing media	
		Thawing Solution (TS)	Trehalose Hydroxy Propyl Cellulose	
		Diluent Solution (DS)	Trehalose Hydroxy Propyl Cellulose	
		Washing Solution (WS)	Hydroxy Propyl Cellulose	

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	MEDIA	COMPOSITION	BASIC COMPOSITION
		Vitrifica	ation media	
		Equilibration Solution (ES)	7.5% (v/v) Dimethyl sulphoxide 7.5% (v/v) Ethylene Glycol Human Albumin (12mg/ml)	
4.	IRVINE	Vitrification Solution (VS)	15 % DMSO 15 % Ethylene Glycol 20% Dextran substitute supplement 0.5 M Sucrose	M – 199 HEPES Buffered Medium
		Warm	ing media	Gentamicin
		Thawing Solution (TS)	1.0 M Sucrose 20 % Dextran Substitute Supplement	
		Diluent Solution (DS)	0.5 M Sucrose 20 % Dextran Substitute Supplement	
		Washing Solution (WS)	20 % Dextran Substitute Supplement	
		Vitrifica	ntion media	
		Blastocyst vitrification solution 1	Cryobase buffer	
		Blastocyst vitrification solution 2	Cryobase buffer 8 % Dimethyl Sulphoxide 8% Ethylene Glycol	Cryobase buffer
5.	COOK Blast	Blastocyst vitrification solution 3	Cryobase buffer 16 % Dimethyl Sulphoxide 16 % Ethylene Glycol 0.68 M Trehalose	10 mm HEPES Buffered Solution
		Blastocyst vitrification solution 4	Dimethyl Sulphoxide (DMSO)	20.0 mg/ml Human Serum Albumin
		Warm	ing media	0.01 mg/ml Gentamicin
		Blastocyst warming solution 1	Cryobase buffer with 0.33 M Trehalose	
		Blastocyst warming solution 2	Cryobase buffer with 0.2 M Trehalose	
		Blastocyst warming solution 3	Cryobase buffer	
		Vitrifica	ation media	Sodium chloride, Potassium
6.	GLOBAL Blast	Solution 1	Dimethyl sulphoxide (7.5 % v/v) Ethylene Glycol (7.5 % v/v) Human Serum Albumin (10 mg/ml)	Potassium phosphate, Mag- nesium sulfate, Sodium Bi- carbonate, Glucose, Lactate Na Salt, Sodium Pyruvate,
		Solution 2	Dimethyl sulphoxide (15 % v/v) Ethylene Glycol (15 % v/v) Sucrose (0.5 M) Human Serum Albumin (10 mg/ml)	Glycine, L-Alanine, L-Ar- ginine HCL, L-Asparagine, L-Aspartic Acid L-Cystine, L-Glutamic Acid, Glycyl-

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	MEDIA	COMPOSITION	BASIC COMPOSITION
		War	rming media	
		Warm 1 solution	Sucrose (1.0 M) Human Serum Albumin (10 mg/ml)	Glutamine , L-Histidine, L-Isoleucine , L-Leucine , L-Lysine HCL, L-Methi- onine , L-Phenylalanine , L-Proline
	GLOBAL Blast	Warm 2 solution	Sucrose (0.5 M) Human Serum Albumin (10 mg/ml)	, L-Serine , L-Threonine , L-Trypto- phan , L-Tyrosine , L-Valine , EDTA , Phenol Red , HEPES, Gentamicin Sul- fate (10ug/ml)
		Warm 3 solution	Human Serum Albumin	
		Vitrif	fication media	
		Vitri 1 [™] oocyte	No cryoprotectant	
		Vitri 2 TM oocyte	Ethylene Glycol Propanediol	
	VITROLIFE Oocvte	Vitri 3 [™] oocyte	Ethylene Glycol Propanediol Sucrose	MOPS Buffered Solution
	,	War	rming media	
		Warm 1^{TM} oocyte	Sucrose	
		Warm 2 TM oocyte	Sucrose	
		Warm 3 TM oocyte	Sucrose	
7.		Warm 4 TM oocyte	No Sucrose	
		Vitrif	fication media	
		Vitri 1 TM Cleave	Contains no cryoprotectant	
		Vitri 2 TM Cleave	Ethylene Glycol as cryoprotectant	
	VITROLIFE Cleavage	Vitri 3™ Cleave	Ethylene Glycol Propanediol Ficoll Sucrose as cryoprotectant	MOPS Buffered Solution Hyaluronan
		Wai	rming media	Amino Acids
		Warm 1 TM Cleave	Sucrose	
		Warm 2 TM Cleave	Sucrose	
		Warm 3 TM Cleave	Sucrose	
		Warm 4 TM Cleave	No cryoprotectant	

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	MEDIA	COMPOSITION	BASIC COMPOSITION
		Vitrifica	ation media	
		Vitri 1 [™] Blast	No cryoprotectant	
		Vitri 2 TM Blast	Ethylene Glycol Propanediol	MOPS Buffered Solution
	VITROLIFE Blastocyst	Vitri 3 TM Blast	Ethylene Glycol Propanediol Ficoll	Amino Acids
		Warm	ing media	Hyaluronan
		Warm 1^{TM} Blast	Sucrose	
		Warm 2 TM Blast	Sucrose	
		Warm 3 TM Blast	No cryoprotectant	
		Vitrifica	ation media	
		Vitri 1 TM Omni	No cryoprotectant	
		Vitri 2 TM Omni	Ethylene Glycol Propanediol	MOPS Buffered Solution
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni	Ethylene Glycol Propanediol Ethylene Glycol Propanediol	MOPS Buffered Solution Human Albumin Serum Amino Acids
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni Warm	Ethylene Glycol Propanediol Ethylene Glycol Propanediol ing media	MOPS Buffered Solution Human Albumin Serum Amino Acids Hyaluronan
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni Warm Warm 1 [™] Omni	Ethylene Glycol Propanediol Ethylene Glycol Propanediol ing media Sucrose	MOPS Buffered Solution Human Albumin Serum Amino Acids Hyaluronan Gentamicin Energy substrates
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni Warm 1 [™] Omni Warm 2 [™] Omni	Ethylene Glycol Propanediol Ethylene Glycol Propanediol ing media Sucrose Sucrose	MOPS Buffered Solution Human Albumin Serum Amino Acids Hyaluronan Gentamicin Energy substrates
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni Warm 1 [™] Omni Warm 2 [™] Omni Warm 3 [™] Omni	Ethylene Glycol Propanediol Ethylene Glycol Propanediol ing media Sucrose Sucrose Sucrose	MOPS Buffered Solution Human Albumin Serum Amino Acids Hyaluronan Gentamicin Energy substrates
	VITROLIFE Omni	Vitri 2 [™] Omni Vitri 3 [™] Omni Warm 1 [™] Omni Warm 2 [™] Omni Warm 3 [™] Omni Warm 4 [™] Omni	Ethylene Glycol Propanediol Ethylene Glycol Propanediol ing media Sucrose Sucrose Sucrose No sucrose	MOPS Buffered Solution Human Albumin Serum Amino Acids Hyaluronan Gentamicin Energy substrates

Table-11: Commercially available Media Kits

KITAZATO

VITRIFICATION MEDIA

The range of sequential vitrification media bottles are packed in sterile condition with cap of different colour codes for differentiation between each media for different stages of the vitrification process.

The media range includes:

One vial of Vitri Step 0 BS (White cap) (1.5 ml) One vial of Vitri Step 1 ES (Blue cap) (1.5 ml) Two vials of Vitri Step 2 VS (Green cap) (2 x 1.5 ml)

Material of the vial/ bottle: Plastic

Expiry: 3 months after the date of manufacture. **Stability:** These solutions are stable until the expiration date shown on the vial label.

WARMING MEDIA

The range of sequential vitrification media bottles are packed in sterile condition with cap of different colour codes for differentiation between each media for different stages of the vitrification process.

The media range includes:

One vial of Vitri Step 0 BS (White cap) (2 x 4 ml) One vial of Vitri Step 1 ES (Blue cap) (4 ml) Two vials of Vitri Step 2 VS (Green cap) (4 ml)

Quality assurance: pH

Osmolality Endotoxins: <0.25EU/ml by LAL Methodology> Sterility (Bacteria, Fungi): Current USP Sterility Test MEA (Mouse Embryo Assay): 1- cell assay ≥80 % after 96 hours.

VITROLIFE Omni

VITRIFICATION MEDIA

The sequential vitrification media includes: One vial of Vitri 1TM Omni (5 ml) One vial of Vitri 2TM Omni (5 ml) One vial of Vitri 3TM Omni (5 ml)

All media bottles are packed in glass bottles in sterile condition with cap.

Material of the vial/ bottle: Glass Expiry: 2 weeks after first opening

Stability: Solutions are stable until the expiration date shown on the container labels and the LOT specific Certificate of analysis.

WARMING MEDIA

The sequential Warming media contains: One vial of Warm 1[™] Omni (5 ml) One vial of Warm 2[™] Omni (5 ml) One vial of Warm 3[™] Omni (5 ml) One vial of Warm 4[™] Omni (5 ml)

Quality Assurance:

Sterile filtered (SAL) 10-³ Mouse Embryo Assay (1-cell) [% expanded blastocyst within 96 hours] ≥80 Bacterial Endotoxins (LAL Assay) [EU/ml] <0.5

IRVINE SCIENTIFIC

VITRIFICATION MEDIA

The sequential Vitrification media includes: One vial of Equilibration Solution (White cap) (2 x 1 ml) One vial of Vitrification Solution (Blue cap) (2 x 1 ml)

Material of the vial/ bottle: Plastic

Expiry: 8 weeks after opening Stability: Solutions are stable until the expiration date shown on the vial tubes. Storage: 2 - 8°C in dark place

WARMING MEDIA

The media range includes: Four vials of Thawing Solution (**Yellow cap**) (4 x 2 ml) One vial of Dilution Solution (**Orange cap**) (2 ml) One vial of Washing Solution (**Red cap**) (2 ml)

Quality Assurance:

Endotoxin by LAL Methodology Biocompatibility by Mouse Embryo Assay (1- cell) Sterility by current USP Sterility Test Albumin Test

VITRIFICATION MEDIA

The media range includes:

One vial of Equilibration Solution (**Blue cap**) (2 ml) One vial of Vitrification Solution (**Purple cap**) (2 ml)

Material of the vial/ bottle: Glass

Expiry: 1 year from the date of manufacturing.

Stability: The solutions are stable until the expiration date shown on the labels

Storage: store unopened containers refrigerated at **2°C to 8°C** (Do not freeze or expose to temperatures greater than 39°C.)

WARMING MEDIA

The warming media contains:

One vial of 1.0 M Sucrose Warming Solution (**Blue cap**) (4 ml) One vial of 0.5 M Sucrose Warming Solution (**Purple cap**) (2 ml) One vial of MOPS Solution (**Pink cap**) (6 ml)

Do not use if the product becomes discoloured, cloudy, turbid, or shows any evidence of microbial contamination.

Quality Assurance:

Endotoxin

Biocompatibility by the 1- cell Mouse Embryo Assay (MEA) **Sterility:** The solutions are **membrane filtered** and aseptically processed according to cGMP procedures which have been validated to meet a **sterility assurance level (SAL) of 10**⁻³.

MEDICULT

VITRIFICATION MEDIA

The sequential vitrification media contains: Two vials of Equilibration Medium (1 ml) Two vials of Vitrification Medium (1 ml)

Material of the vial/ bottle: Plastic

Expiry: Minimum 8 weeks from the date of shipment

Stability: Solutions are stable until the expiration date shown on the vial tubes.

WARMING MEDIA

The Warming media includes: One vial of Warming Medium (Vial 1) (2 ml) Two vials of Dilution Medium as Dilution Medium 1 (Vial 2) (2 ml) Dilution Medium 2 (Vial 3) (2 ml) Two vials of Washing Medium (Vial 4) (2 x 2)

Quality Assurance:

Sterility tested Endotoxin tested ≤0.5 EU/ml Mouse Embryo Assay (MEA) tested pH tested Osmolality

VITROLIFE Oocyte

VITRIFICATION MEDIA

The sequential vitrification media contains: One vial of Vitri 1^{TM} Oocyte (10 ml) One vial of Vitri 1^{TM} Oocyte (10 ml) One vial of Vitri 1^{TM} Oocyte (10 ml)

Material of the vial/ bottle: Glass

Expiry: 2 weeks after first opening Stability: Solutions are stable until the expiration date shown on the container labels and the LOT- specific Certificate of analysis. Storage: 2 - 8°C in dark place

WARMING MEDIA

The sequential Warming media contains: One vial of Warm 1^{TM} Oocyte (10 ml) One vial of Warm 1^{TM} Oocyte (10 ml) One vial of Warm 1^{TM} Oocyte (10 ml)

Quality Assurance:

Sterile filtered (SAL) 10-³ Mouse Embryo Assay (1-cell) [% expanded blastocyst within 96 hours] ≥80 Bacterial Endotoxins (LAL Assay) [EU/ml] <0.5

VITROLIFE Blastocyst

VITRIFICATION MEDIA

 RapidVit™ Blast contains

 Vitri 1™ Blast (10 ml)

 Vitri 2™ Blast (10 ml)

 Vitri 3™ Blast (10 ml)

 For the vitrification of human blastocyst stage embryos.

Material of the vial/ bottle: Glass

Expiry: 2 weeks after first opening

Stability: Solutions are stable until the expiration date shown on the container labels and the LOT- specific Certificate of analysis.

Storage: store dark at 2 - 8°C

WARMING MEDIA

 RapidWarm[™] Blast contains

 Warm 1[™] Blast (10 ml)

 Warm 2[™] Blast (10 ml)

 Warm 3[™] Blast (10 ml)

 For the warming of the vitrified human blastocyst stage embryos.

Quality Assurance:

Sterile filtered (SAL) 10⁻³ Mouse Embryo Assay (1-cell) [% re-expanded blastocyst within 24 hours post-test] ≥70 Bacterial Endotoxin (LAL Assay) [EU/ml] <0.5

GLOBAL Blastocyst

VITRIFICATION MEDIA

The sequential Vitrification media contains : One vial of DMSO Equilibration Solution (Blue cap) (5 ml) One vial of Vitrification Solution (White cap) (5 ml)

Material of the vial/ bottle: Plastic

Expiry: 1 year from the date of manufacture. Stability: Solutions are stable until the expiration date shown on the container labels Sterility: 2- 8°C and protected from light

Quality Assurance: Sterility: Membrane filtered (SAL) 10-3

WARMING MEDIA

The Warming media contains: One vial of Warm 1 Solution (Green cap) (1 x 5 ml) One vial of Warm 2 Solution (Yellow cap) (2 ml) Two vials of Warm 3 Solution (Red cap) (2 x 5 ml) For the recovery and rehydration of the human blastocyst stage embryos.

Physiochemical test: pH - 7.1 - 7.2Osmolality (mOsM) Biological test: Endotoxin (LAL Assay - <0.5 EU/ml Mouse Blastocyst Re- expansion Assay (% re-expanded blastocysts at 24th of culture after step- in, step- out of all of cryopreservation and thawing solutions)- ≥ 80 % MEA (1-cell) has very low permeability to glycerol and therefore 1cell Mouse Embryo assay is inappropriate for testing of this kit.

CRYOTECH

VITRIFICATION MEDIA

The vitrification media includes:

One vial of Equilibration Solution as **Vitri Step 1 with blue cap** (1 ml)

Two vials of Vitrification Solution as **Vitri Step 2 with green cap** (1 ml each)

Material of the vial/ bottle: Plastic

Expiry: 12 months (1 Year)

Stability: Solutions are stable **at room temperature for 90 days** (**3 months**) since it contains Endotoxin free Trehalose. **Storage: 2- 8°C** protected from light.

WARMING MEDIA

The Warming Solution contains: Thawing Solution as Warm Step 1 with red cap (1.8 ml) Diluent Solution as Warm Step 2 with yellow cap (.5 ml) Washing Solution as Warm Step 3 with white cap (1 ml)

Quality assurance:

Sterility: Sterility Test **Endotoxin by ES methodology** (Each component) **Efficiency:** Survival of 30/30 Porcine oocytes.

COOK Blastocyst

VITRIFICATION MEDIA

The media range includes

Blastocyst Vitrification Solution 1 with **Orange cap (20 ml)** Blastocyst Vitrification Solution 2 with **Orange cap (20 ml)** Blastocyst Vitrification Solution 3 with **Orange cap (20 ml)** Blastocyst Vitrification Solution 4 with **Blue cap (10 ml)**

Material of the vial/ bottle: Glass

Stability: Solutions are stable until the expiration date shown on the vial label. Expiry: 8 weeks from date of manufacture.

WARMING MEDIA

The media range includes

Blastocyst Warming Solution 1 with **Orange cap (20 ml)** Blastocyst Warming Solution 2 with **Orange cap (20 ml)** Blastocyst Warming Solution 3 with **Orange cap (20 ml)**

Quality Assurance:

Sterility: These products are supplied sterile and are sterilized by Aseptic Filtration.
Each LOT of product is tested for:
Endotoxin by LAL Methodology
Biocompatibility by Mouse Embryo Assay (MEA)
Osmolality and pH

Table-12 : Description of Vials available in Vitrification & Warming Kits

	TYPE OF		VITRIFICATIO	N MEDIA		WARMING	MEDIA	
	FREEZ- ING	BKAND NAME	VIALS	VOLUME	COLOR OF VIAL CAP	VIALS	VOLUME	COLOR OF VIAL CAP
			Equilibration Solution (ES)	1 x 1 ml	Blue	Thawing Solution (TS)	1 x 1.8 ml	Red
		CRYOTECH	Vitrification Solution (VS)	2 x 1 m]	Green	Diluent Solution (DS)	1 x 0.5 ml	Yellow
						Washing Solution (WS)	1 x 1 ml	White
Ι.	00CYTE FREEZING		Vitri 1 TM oocyte	10 ml	White	Warm 1 TM oocyte	10 ml	White
		VITPOLIEE	Vitri 2 TM oocyte	10 ml	White	Warm 2 TM oocyte	10 ml	White
			Titui 2TMtS	1.0.1	1475.40	Warm 3 TM oocyte	10 ml	White
			ancoon		١١١٢٩	Warm 4 TM oocyte	10 ml	White
			Equilibration Solution (ES)	1 x 2 ml	Blue	1.0 M Sucrose warming solution	1 x 4 ml	Blue
		SAGE (ORIGIO)	\JJ1)	- - -	-	0.5 M Sucrose warming solution	1 x 2 ml	Purple
			Vitrincation Solution (VS)	1 X 7 MI	rurpie	MOPS solution	1 x 6ml	Pink
			Vitri 1 TM Cleave	1 x 10 ml	White	Warm 1 TM Cleave	1 x 10 ml	White
2.	EMBRYO FREEZING	VITROLIFE	Vitri 2 TM Cleave	1 x 10 ml	White	Warm 2 TM Cleave	1 x 10 ml	White
			Vitri 3 TM Cleave	1 x 10 ml	White	Warm 3 TM Cleave	1 x 10 ml	White
			Equilibration Solution (ES)	1 x 1 ml	Blue	Thawing Solution (TS)	1 x 1.8 ml	Red
		CRYOTECH		-	(Diluent Solution (DS)	1 x 0.5 ml	Yellow
			Vitrincation Solution (VS)	2 X 1 MI	ureen	Washing Solution (WS)	1 x 1 ml	White
	BLACTO-		Blastocyst vitrification solution 1	20 ml	Orange	Blastocyst warming solution 1	20 ml	Orange
	CYST	COOK Blast	Blastocyst vitrification solution 2	20ml	Orange	Blastocyst warming solution 2	20 ml	Orange
	FREEZING		Blastocyst vitrification solution 3	20ml	Orange	Blastocyst warming solution 3	20 ml	Orange

NEXUS Volume: 6

••••••••••••••••••••••••

	TVDF OF	UNVAN	VITRIFICATIO	N MEDIA		WARMING	MEDIA	
S.NO	FREEZING	NAME	VIALS	VOLUME	COLOR OF VIAL CAP	VIALS	VOLUME	COLOR OF VIAL CAP
		COOK Blastx'	Blastocyst vitrification solution 4	10ml	Blue	Blastocyst warming solution 3	20 ml	Orange
			Equilibration Solution (ES)	1 x 2 ml	Blue	1.0 M Sucrose warming solution	1 x 4 ml	Blue
		SAGE (ORIGIO)	1311 /	[C F	- L G	0.5 M Sucrose warming solution	1 x 2 ml	Purple
			V Itrincation Solution (VS)	1 X 2 MI	rurpie	MOPS solution	1 x 6ml	Pink
(BLASTOCYST		Vitri 1 TM Blast	1 x 10 ml	White	Warm 1 TM Blast	1 x 10 ml	White
с .	FREEZING	VITROLIFE	Vitri 2 TM Blast	1 x 10 ml	White	Warm 2 TM Blast	1 x 10 ml	White
			Vitri 3 TM Blast	1 x 10 ml	White	Warm 3 TM Blast	1 x 10 ml	White
			Dimethyl Sulphoxide Equilibration Solution (DMSO ES)	1 x 5 ml	Blue	Warm 1 solution	1 x 5 ml	Green
		GLOBAL	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1111-14-2	Warm 2 solution	1 x 5 ml	Yellow
			V IIT III CALION SOLULION (VS)	и схи	vv nite	Warm 3 solution	2 x 5 ml	Red
			Vitri 1 TM omni	1 x 5 ml	White	Warm 1 TM omni	1 x 5 ml	White
		VITROLIFE	Vitri 2 TM omni	1 x 5 ml	White	Warm 2 TM omni	1 x 5 ml	White
		omni		1 5 1	1471- : 4 -	Warm 3 TM omni	1 x 5 ml	White
						Warm 4 TM omni	1 x 5 ml	White
4	OOCYTES, EMBROVS		Basic Solution (BS)	1 x 1.5 ml		Thawing Solution (TS)	2 x 4 ml	Red
ł	BLASTOCYST	KITAZATO	Equilibration Solution (ES)	1 x 1.5 ml	Blue	Diluent Solution (DS)	1 x 4 ml	Yellow
			Vitrification Solution (VS)	2 x 1.5 ml	Green	Washing Solution (WS)	1 x 4 ml	White
			Equilibration Solution (ES)	2 x 1ml	White cap	Thawing Solution (TS)	4 x 2 ml	Yellow
		IRVINE	\JJ1)	[L	10	Diluent Solution (DS)	1 x 2 ml	Orange
			Vitrification Solution (VS)	2 X IMI	blue cap	Washing Solution (WS)	1 x 2 ml	Red

48

$\mathbf{\nabla}$
TT]
01
17
\cup
\sim
\cup
-
\smile
\mathbf{Z}
Z
NO
NO
NOI
NOI
IION
NOIT
ATION
ATION
CATION
CATION
ICATION
ICATION
FICATION
[FICATION
IFICATION
RIFICATION
RIFICATION
RIFICATION
<i>TRIFICATION</i>
TRIFICATION
ITRIFICATION
/ITRIFICATION
VITRIFICATION
VITRIFICATION
: VITRIFICATION
: VITRIFICATION
3: VITRIFICATION
3 : VITRIFICATION
13 : VITRIFICATION
13 : VITRIFICATION
-13 : VITRIFICATION
e-13: VITRIFICATION
e-13 : VITRIFICATION
le-13 : VITRIFICATION
ble-13 : VITRIFICATION
uble-13 : VITRIFICATION
able-13 : VITRIFICATION

				COOLING PROTOG	OL			
S.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	REMARKS
		Equilibration Solution (ES)		Equilibration Solution (ES)		Equilibration Solution (ES)		
		Dispense 300 µl of ES on the vitri plate and transfer oocyte on the surface of ES	< 15 mins	Fill the vitri plate well with 300 µl of ES and the embryo on the surface of ES	< 12 mins	Dispense 300 µl of ES on the vitri plate and transfer blasto- cyst on the surface of ES	< 15 mins	Bring ES and VS vials to room tem- perature (25-27°C) at least 1 hour before
		Vitrification Solution (VS)		Vitrification Solution (VS)		Vitrification Solution (VS)		
1.	CRYO- TECH	Transfer oocyte to the first drop of 300 μ l of VS $_1$	30-40 sec	Transfer embryo to the first drop of 300 µl of VS 1	30-40 sec	Transfer blastocyst to the first drop of 300 µl of VS ₁	30-40 sec	The entire procedure must be carried out at room temperature (25-27°C).
		Finally transfer oocyte to the second drop of 300 µl of VS _2	10- 20 sec	Finally transfer embryo to the second drop of 300 μ l of VS_2	10- 20 sec	Finally transfer blastocyst to the second drop of 300 μ l of \mathbf{VS}_2	10- 20 sec	Do NOI use neated stage.
		Basic Solution (BS)		Equilibration Solution (ES)		Equilibration Solution (ES)		
		Dispense 20 µl of BS on the repro plate and transfer oocyte to the bottom of the BS	3 mins	Dispense 300 µl of ES on the repro plate and transfer the embryo to the top center of ES	10- 15 mins	Dispense 300 µl of ES on the repro plate well and trans- fer the blastocyst to the top center of ES	12- 15 mins	
2.	KITAZ- ATO	Equilibration Solution (ES)		Vitrification Solution (VS)		Vitrification Solution (VS)		Bring BS, ES and VS to room temperature
		Add 20 µl of ES gently on top of BS with the oocyte	3 mins	Dispense 300 µl of VS on the repro plate and transfer embryo from ES to VS ₁	0.5 min	Dispense 300 µl of VS on the Repro plate and transfer blastocyst from ES to VS ₁		(25-27°C)

.

.

				COOLING PROTO	COL			
S.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
		Add another 20 μl of ES gently on the top of BS	3 mins					
		Add another 240 µl of ES gently on top of the BS	6-9 mins					
	KITAZ-	Vitrification Solution (VS)		Drop another 300 μl of VS		Drop another 300 µl of VS		
	ATO	Dispense 300 µl of VS on the Repro plate and transfer oocyte from ES to VS ₁	0.5 min	\mathbf{VS}_1 to \mathbf{VS}_2	0.5 min	\mathbf{VS}_1 to \mathbf{VS}_2	0.5 min	
		Dispense another 300 μ l of VS and transfer oocyte from VS ₁ to VS ₂	0.5 min					
		HEPES buffered medium with protein (H)		Equilibration solution (ES)		Equilibration solution (ES)		
		Dispense 20 µl of H and place oocytes into H	1 min	Dispense 50 µl of ES and transfer embryos to ES	6- 10 mins	Dispense 50 µl of ES and transfer blastocysts to ES	6- 10 mins	All procedure must be performed at
		Equilibration Solution (ES)						room temperature
3	IRVINE	Dispense three 20 μl drops of ES (ES ₁ , ES ₂ and ES ₃) Merge ES ₁ with H and allow spontaneous mixing	2 mins	(011)		(111)		Do not use HEAT- ED STAGE.
		Then merge \mathbf{ES}_2 with $\mathbf{H}+\mathbf{ES}_1$ and allow spontaneous mixing	2 mins	VIRTINGATION SOLUTION (VS) Dispense 50 µl of VS and	30 sec	vıtrıncauon souuon (vs) Dispense 50 ہا of VS and	30 sec	The timing for expo-
		Transfer oocytes from merged drop to \mathbf{ES}_3	6- 10 mins	transfer embryos from ES to VS		transfer blastocyst from ES to VS		sure to VS is CRIT - ICAL for embryo vitrification.
		Vitrification Solution (VS)						
		Dispense 50 μ l drop of VS and transfer oocytes from ES $_3$ to VS	30 sec					

NEXUS Volume: 6

50

.

				COOLING PROTO	COL			
S.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
		Vitri 1 TM Oocyte		Vitri 1 TM Cleave		Vitri 1 TM Blast		
		Dispense 1 ml of Vitri 1 TM oocyte into a 5-well plate and transfer oocytes from culture medium into Vitri 1 TM Oocyte.	5- 20 mins	Dispense 0.5- 1ml of Vitri 1 TM Cleave into separate wells of 5-well plate and transfer embryos from cul- ture medium into the Vitri 1 TM Cleave	5- 10 mins	Dispense 0.5- 1 ml of Vitri 1 TM Blast into separate wells of a 5-well plate and transfer collapsed blastocysts from culture medium into Vitri 1 TM Blast	5- 20 min	All procedures should be performed at +37°C and ambi- ent atmosphere.
		Vitri 2 TM oocyte		Vitri 2 TM Cleave		Vitri 2 TM Blast		
4.	VITRO- LIFE	Dispense 1 ml of Vitri 2 TM oocyte into same plate and transfer oocytes from Vitri 1 TM oocyte to Vitri 2 TM oocyte	2- 5 mins	Dispense 0.5- 1 ml of Vitri 2 TM Cleave in a separate well of same plate and trans- fer embryos into Vitri 2 TM Cleave	2 mins	Dispense 0.5- 1ml of Vitri 2 TM Blast in a separate well of same plate and transfer blastocyst from Vitri 1 TM Blast to Vitri 2 TM Blast	2 min	Deviations from +37°C will alter the permeability of cryprotectants, which may compro- mise specimen sur- vival.
		Vitri 3 TM oocyte		Vitri 3 TM Cleave		Vitri 3 TM Blast		
		Dispense 20 µl droplet of Vitri 3 TM oocyte on a 40 mm culture dish and transfer oocytes from Vitri 2 TM oocyte to Vitri 3 TM oocyte	25- 30 sec	Dispense 20 µl droplet of Vitri 3 TM Cleave on a 40 mm culture plate and transfer embryos into Vitri 3 TM Cleave	30 sec	Dispense 20 µl droplet of Vitri 3 TM Blast on a 40 mm culture plate and transfer blastocyst into the Vitri 3 TM Blast	45 sec	Warm all solutions to +37°C
				Equilibration solution (ES)		Equilibration solution (ES)		
у.	SAGE ORIGIO	Details Not Available	NA	Prepare an inverted lid of a Petri dish by aseptically dis- pensing one 20 µl drop of ES on the lid and transfer em- bryos from culture medium to the top of the drop of ES	5-15 mins	Prepare an inverted lid of a Petri dish by aseptically dispensing one 20 µl drop of ES on the lid and transfer em- bryos from culture medium to the top of the drop of ES	5-15 mins	Vitrification procedure is to be performed at room temperature (20- 25°C)
				Vitrification Solution (VS)		Vitrification Solution (VS) Dispense four 20 ul drops of		
				Dispense four 20 µl drops of VS (VS ₁ , VS ₂ , VS ₃ and VS ₄) and transfer embryos from ES into the centre of VS ₁	5 sec	VS (VS ₁ , VS ₂ , VS ₃ and VS ₄) and transfer embryos from ES into the centre of VS ₁	5 sec	Do not use a HEA1- ED microscope stage

NEXUS Volume: 6

.

51

.

	OFM			COOLING PROTO	DCOL			DEMADICS
	MEIO	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	CUNICIPATIN
				Quickly transfer the embryos from the VS_1 to the centre of the VS_2	5 sec	Quickly transfer the embryos from the VS1 to the centre of the VS ₂	5 sec	Minimize exposure of specimens to light during
	SAGE ORIGIO	Details Not Available	NA	Next, transfer the embryos from VS_2 to the centre of the VS_3	10 sec	Next, transfer the embryos from VS_2 to the centre of the VS_3	10 sec	incubation in ES and VS. Bring the solutions to room temperature before
				Finally, transfer the embryos from VS ₃ to the bottom of the VS ₄	90 sec	Finally, transfer the embryos from VS ₃ to the bottom of the VS ₄	90 sec	use.
						Equilibration Solution (ES)		
						Dispense 20 μ l of ES into the embryo GPS ^R dish and transfer the blastocyst to the top of the drop of ES	5- 15 mins	
						Vitrification Solution (VS)		The vitrification procedure is to be performed at room
ف	GLOBAL Blact	Details Not Available	NA	Details Not Available	NA	Dispense four 20 μ l of VS into the same plate (VS ₁ , VS ₂ , VS ₃ and VS ₄) and transfer blasto- cysts from ES into the center of the VS ₁	5 sec	temperature (20-27°C) Bring the ES and VS to room temperature before use.
						Quickly, transfer the blastocysts from VS ₁ to the center of the VS ₂	5 sec	Do not use HEATED microscope stage Minimize exposure of suecimens to light during
						Next, transfer the blastocysts from VS_2 to the center of the VS_3	10 sec	vs.
						Finally, transfer the blastocysts from the VS_3 to the bottom of the VS_4	90 sec	

52

.

	MIC			COOLING PROTO	COL			DENTADIZO
0.N.C.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKNS
						Blastocyst vitrification solution 1 Prepare the vitrification solu- tions in a 4-well dish by adding 800 µl of Vitrifiation Solution 1 into well 1 and 2 and place blas- tocysts to be vitrified into well 1.		
						Move the specific blastocysts to be vitrified into well 2	1 min	Acords service data strengt
						Blastocyst Vitrification Solution 2		Aseput technique snourd be used.
~	COOK Blast	Details Not Available	NA	Details Not Available	NA	Prepare the vitrification solution by adding 400 µl of Blastocyst Vitrification Solution 4 to 4.6 ml of Blastocyst Vitrification Solu- tion 2 and mix well. Dispense 800 µl of this prepared solution into well 3 and place the blastocysts to well 3.	2 mins	DMSO is a frozen solid at 2-8°C. Before use equili- brate Blastocyst Vitrifica- tion Solution 4 (DMSO) to room temperature prior to use. Equilibrate the three
						Blastocyst Vitrification Solution 3		Vitrification Solutions to 37°C prior to use.
						Prepare the vitrification solution by adding 1 ml of Blastocyst Vit- rification Solution 4 to 5.25 ml of Blastocyst Vitrification Solu- tion 3 and mix well Dispense 800 µl of this prepared solution into well 4 and place the blastocysts to well 4	20-30 sec	
8°	ORIGIO Medicult	As Discussed In Part 3		As Discussed In Part 3		As Discussed In Part 3		

.

\cup
\sim
T
\sim
TT.
\cup
-
\cup
$\mathbf{\Theta}$
X
8
õ
lõ
TOOL
DOTO
OTOC
OTOC
SOTOC
ROTOC
ROTOC
PROTOC
PROTOC
PROTOC
FROTOC
G PROTOC
G PROTOC
NG PROTOC
NG PROTOC
ING PROTOC
ING PROTOC
IING PROTOC
AING PROTOC
MING PROTOC
MING PROTOC
MING PROTOC
RMING PROTOC
RMING PROTOC
ARMING PROTOC
ARMING PROTOC
VARMING PROTOC
WARMING PROTOC
WARMING PROTOC
WARMING PROTOC
WARMING PROTOC
: WARMING PROTOC
: WARMING PROTOC
4 : WARMING PROTOC
4 : WARMING PROTOC
14 : WARMING PROTOC
14 : WARMING PROTOC
-14 : WARMING PROTOC
e-14 : WARMING PROTOC
e-14 : WARMING PROTOC
le-14 : WARMING PROTOC
ole-14 : WARMING PROTOC
ble-14 : WARMING PROTOC
able-14 : WARMING PROTOC
able-14 : WARMING PROTOC

ON S	OFM		Ĭ	WARMING PROTOCO	T			RFMARKS
	M T	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	
		Thawing Solution (TS) Dispense 1.8 ml of TS into the first square well of the warm plate and quickly (within 1 sec) put the Cryotech into the TS	1 min	Thawing Solution (TS)Dispense 1.8 ml of TS into the firstsquare well of the warm plate andquickly (within 1 sec) put the Cryotechinto the TS	1 min	Thawing Solution (TS) Dispense 1.8 ml of TS into the first square well of the warm plate and quickly (within 1 sec)put the cryotech device into the TS	1 min	
		Diluent Solution (DS) At the end of 1 min. aspirate the oocyte and 3 mm long column of TS into the pipette.		Diluent Solution (DS) At the end of 1 min. aspirate the embryo and 3 mm column long of TS into the pipette.		Diluent Solution (DS) At the end of 1 min. aspirate the blastocyst and 3 mm long column of TS into the pipette.		
		Transfer TS to the bottom center of DS and expel the oocyte slowly at the bot- tom of TS layer in DS well. This is for most gradual displacement from TS to DS . Wait for 3 min. While waiting, fill the WS ₁ and WS ₂ well with 300 μl of Washing Solution.	3 mins	Transfer TS to the bottom center of DS and expel the embryo slowly at the bottom of TS layer in DS well. This is for most gradual displacement from TS to DS . Wait for 3 min. While waiting, fill the WS ₁ and WS ₂ well with 300 µl of Washing Solution.	3 mins	Transfer TS to the bottom center of DS and expel the blastocyst slowly at the bottom of TS layer in DS well. This is for most gradual displacement from TS to DS . Wait for 3 min. While waiting, fill the WS_1 and WS_2 well with 300 µl of Washing Solution.	3 mins	The whole pro- cedure should be made under room temperature (20- 27°)
	CRYOTECH	Washing Solution (WS) Aspirate the oocyte and 3 mm long col- umn of DS into the pipette.		Washing Solution (WS)Aspirate the embryo and 3 mm longcolumn of DS into the pipette.		Washing Solution (WS) Aspirate the blastocyst and 3mm long column of DSinto the pipette.		Use a Pasteur pi- pette with the right diameter for
		Transfer DS to the bottom center of WS ₁ , and expel the oocyte slowly at the bottom of DS layer in WS ₁ well. This is for most gradual displacement from DS to WS ₁ . Wait for 5 min.	5 mins	Transfer DS to the bottom center of WS ₁ , and expel the embryo slowly at the bottom of DS layer in WS ₁ well. 5 This is for most gradual displacement from DS to WS ₁ . Wait for 5 min.	5 mins	Transfer DS to the bottom center of WS ₁ , and expel the blastocyst slowly at the bottom of DS layer in WS ₁ well. This is for most gradual displacement from DS to WS ₁ . Wait for 5 min.	5 mins	oocytes, embryos (140- 150 µm) Limit exposure to
		Give a survival judgment at the end of this step depending on the recovery of the shrunken oocyte.		Give a survival judgment at the end of this step depending on the recovery of the shrunken embryo.		Give a survival judgment at the end of this step depending on the recovery of the shrunken blastocyst.		light while mov- ing the specimens through the solu- tions.
		Aspirate the oocyte with minimal volume of \mathbf{WS}_{l}		Aspirate the embryo with minimal vol- ume of WS ₁		Aspirate the blastocyst with minimal volume of WS ₁		
		Put the oocyte on the surface of the \mathbf{WS}_2 well. When oocyte/embryo sinks to bot- tom, aspirate and put on the surface. It will again sink to the bottom, thus wash- ing is done twice.	1 min	Put the embryo on the surface of the WS_2 well. When oocyte/embryo sinks to bottom, aspirate and put on the surface. It will again sink to the bottom, thus washing is done twice.	1 min	Put the blastocyst on the surface of the WS ₂ well. When oocyte/embryo sinks to bottom, aspirate and put on the surface. It will again sink to the bottom, thus washing is done twice.	1 min	
		Put the oocyte in the droplet of the cul- ture media for the recovery for ICSI and ET.		Put the embryo in the droplet of the culture media for the recovery for ICSI and ET.		Put the blastocyst in the droplet of the culture media for the recovery for ICSI and ET.		

.

.

	M			WARMING PROTOCO	IC			REMARKS
		OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	
Disr Petr (wit	Dist Petr (wit and	Thawing Solution (TS) ense the full contents into the i Dish and quickly immerse hin 1 sec) Cryotop sheet into TS dispense oocyte from the sheet.	1 min	Thawing Solution (TS) Dispense the full contents into the Petri Dish and quickly immerse (within 1 sec) Cryotop sheet into TS and dispense embryo from the sheet.	1 min	Thawing Solution (TS) Dispense the full contents into the Petri Dish and quickly immerse (within 1 sec) Cryotop sheet into TS and dispense blas- tocysts from the sheet.	1 min	
A ZATO Cele Control Co	Di Di Cei Cei Cei	Dilution Solution (DS) spense 300 µl of DS into the Repro ate well and blow out only TS in a Pasteur pipette into the bottom inter of DS slowly, then gently place cyte on the bottom of the TS layer.	3 mins	Dilution Solution (DS) Dispense 300 µl of DS into the Repro Plate well and blow out only TS in the Pasteur pipette into the bottom center of DS slowly, then gently place embryo on the bottom of the TS layer.	3 mins	Dilution Solution (DS) Dispense 300 µl of DS into the Repro Plate well and blow out only TS in the Pasteur pipette into the bottom center of DS slowly, then gently place blas- tocysts on the bottom of the TS layer.	3 mins	Warm TS vial (sealed) with a Petri Dish in an incubator to 37°C (>1.5 hours)
A K tē k (A Di	Di Di We Cy	Washing Solution (WS) spense two 300 μ l drops of WS /S ₁ and WS ₂) into the Repro Plate II and blow out only DS in the Pas- Ir pipette into the bottom center of S ₁ slowly, then gently place the oo- te on the bottom there.	5 mins	Washing Solution (WS) Dispense two 300 μ l drops of WS (WS ₁ and WS ₂) into the Repro Plate well and blow out only DS in the Pasteur pipette into the bottom center of WS ₁ slowly, then gently place the embryo on the bottom there.	5 mins	Washing Solution (WS) Dispense two 300 µl drops of WS (WS ₁ and WS ₂) into the Repro Plate well and blow out only DS in the Pasteur pipette into the bot- tom center of WS ₁ slowly, then gently place the blastocysts on the bottom there.	5 mins	Bring DS and WS to room tempera- ture (25- 27°C)
A to A	A un tr to V	spirate oocyte with minimal vol- me of WS_1 with Pasteur pipette and ansfer it to the top center of WS_2 , fiter the oocyte free falls to the bot- m of WS_2 , do same work again in S_2	1 min	Aspirate embryo with minimal volume of WS_1 with Pasteur pipette and transfer it to the top center of WS_2 . After the embryo free falls to the bottom of WS_2 , do same work again in WS_2	1 min	Aspirate blastocysts with mini- mal volume of W_{S_1} with Pasteur pipette and transfer it to the top center of W_{S_2} . After the blasto- cysts free falls to the bottom of W_{S_2} , do same work again in W_{S_2}	1 min	

.

.

55

.

				WARMING PROTOCO	IC			
5.NU.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST		KEMAKKS
		Thawing Solution (TS) Dispense 1 ml of TS and warm to 37°C and quickly plunge the curved spatula (gutter) of the holding rod into the 37°C TS and gently swirl to detach oocyte and leave oocyte in the TS	1 min	Thawing Solution (TS) Dispense 250 µl of TS and warm to 37°C and quickly plunge the curved spatula (gutter) of the holding rod into the 37°C TS and gently swirl to detach embryo and leave embryo in the TS	n	Thawing Solution (TS) Dispense 250 µl of TS and warm to 37°C and quickly plunge the curved spatula (gut- ter) of the holding rod into the 37°C TS and gently swirl to letach embryo and leave em- pryo in the TS	1 min	
ŕ	IRVINE	Dilution solution (DS) Dispense one 50 μl drops of DS on a sterile Perti Dish and trans- fer oocyte to DS	4 mins	Dilution solution (DS) Dispense one 50 μl drops of DS on a sterile Perti Dish and trans- fer embryo to DS	4 mins	Dilution solution (DS) Dispense one 50 μl drops of DS on a sterile Perti Dish and ransfer embryo to DS	4 mins	Warm TS at 37° C (in- cubator without CO ₂) at least 30 minutes pri- or to starting warming procedure.
		Washing Solution (WS)Dispense two $50 \mu l$ drops of WS(WS1 and WS2) and transfer oo-cyte to WS1	4 mins	Washing Solution (WS)Dispense two 50 µl drops of WS(WS1 and WS2) and transfer embryo to WS1	4 mins	Washing Solution (WS)Dispense two 50 μ l drops ofWS (WS1 and WS2) and trans-er embryo to WS1	4 mins	Limit exposure to light while moving speci- mens through solu- tions.
		And finally transfer oocyte to WS ₂ from WS ₁ and after 4 mins transfer warmed oocyte to pre-equilibrated culture medi- um.	4 mins	And finally transfer embryo to WS ₂ from WS ₁ and after 4 mins transfer warmed embryo to pre-equilibrated culture medium.	4 mins	And finally transfer embryo to W_{S_2} from W_{S_1} and after 4 mins transfer warmed embryo to pre-equilibrated culture me- lium.	4 mins	

				WARMING PROTOCO	IC			
S.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
		Warm 1 TM Oocyte Dispense 1 ml of the media into the separate wells of a 5-well plate and quickly remove Rapid-i from the Rapid Straw and plunge the tip and the hole of the Rapid-i into the Warm 1 TM Oocyte solution and al- low oocytes to fall from device and sink at the bottom.	1 min	Warm 2 TM Cleave Dispense 0.5- 1 ml media into the separate wells of a 5-well plate and place the vitrified em- bryos quickly into the Warm 1 TM Cleave and allow the embryos to fall from device and sink at the bottom	10- 30 sec	Warm 1 TM Blast Dispense 0.5- 1 ml media into the separate wells of a 5-well plate and place the vitrified blastocyst quickly into the Warm 1 TM Blast and allow the embryos to fall from device and sink at the bottom	2 min	
4.	VITROLIFE	Warm 2 TM Oocyte Dispense 1 ml of the media and transfer oocytes into the Warm 2 TM Oocyte and let the oocytes remain in the solution	3 min	Warm 2 TM Cleave Dispense 0.5- 1 ml of the media and transfer the embryos into the Warm 2 TM Cleave And let the embryos remain in the solution	1 min	Warm 2 TM Blast Dispense 0.5- 1 ml of the me- dia and transfer the blastocyst into the Warm 2 TM Blast And let the blastocyst remain in the solution	3 min	All manipulations of the specimens are carried out at 37°C The recommended volumes should not be changed. Volume changes will affect temperature control
		Warm 3^{TM} OocyteDispense 1 ml of the media andtransfer the oocytes into Warm 3^{TM} Oocyte and let the oocytes remainin the solution	5 mins	Warm 3 TM Cleave Dispense 0.5- 1 ml of the media and transfer the embryos into the Warm 3 TM Cleave And let the embryos remain in the solution	2 mins	Warm 3 TM Blast Dispense 0.5- 1 ml of the me- dia and transfer the blastocyst	5- 10 mins	in the first warming solution as well as the osmolality, which may result in subop- timal oocyte survival
		Warm 4^{TM} OocyteDispense 1 ml of the media and transfer the oocytes to Warm 4^{TM} Oocyte and let the oocytes remain in the solution	5- 10 mins	Warm 4 TM Cleave Dispense 0.5- 1 ml of the media and transfer the embryos into the Warm 4 TM Cleave and let the embryos remain in the solution	5 mins	into the Warm 3 And let the blastocyst remain in the solution		

.

				WARMING PROTOCO	OL			
0.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
				1.0M Sucrose Warming Solution (1 M WS)		1.0 M Sucrose Warming Solution (1 M WS)		
				Dispense one 20 μ l drop of media on the sterile Petri Dish and place the vitrified embryos quickly into the 1.0 M WS and allow the em- bryos to fall from device and float to the top of the drop.	1 min	Dispense one 20 µl drop of media on the sterile Petri Dish and place the vitrified blasto- cysts quickly into the 1.0 M WS and allow the embryos to fall from device and float to the top of the drop.	1 min	The warming and di- lution procedure is to be performed at 35- 37°C.
				0.5 M Sucrose Warming Solution (0.5 M WS)		0.5 M Sucrose Warming Solution (0.5 M WS)		5
				Dispense two 20 μ l of the 0.5 M WS (0.5 M WS, and 0.5 M WS ₂) and transfer embryos from the drop of 1.0 M WS to the bottom of 0.5 M WS ₁ .	2 mins	Dispense two 20 μ l of the 0.5 M WS (0.5 M WS, and 0.5 M WS ₂) and transfer blastocysts from the drop of 1.0 M WS to the bottom of 0.5 M WS ₁ .	2 mins	Use a HEATED mi- croscope stage for the following procedure.
<u></u> .	SAGE (ORIGIO)	Details Not Available	NA	Then transfer to the bottom of the 0.5 M WS_2	2 mins	Then transfer to the bottom of the 0.5 M WS_2	2 mins	
				MOPS Solution		MOPS Solution		Minimize exposure of specimens to light
				Dispense three 20 μ l drops of MOPS Solution (MS ₁ , MS ₂ and MS ₃). Transfer the embryos to the bottom of the MS ₁	3 mins	Dispense three 20 μ l drops of MOPS Solution (MS ₃ , MS ₂ and MS ₃). Transfer the embryos to the bottom of the MS ₁	3 mins	during incubation in warming solutions
				Then transfer the embryos to the top of the \mathbf{MS}_2	3 mins	Then transfer the embryos to the top of the \mathbf{MS}_2	3 mins	Bring the solutions to 35- 37°C before use.
				Now, transfer the embryos to the top of the \mathbf{MS}_3	3 mins	Now, transfer the embryos to the top of the \mathbf{MS}_3	3 mins	
				After 3 mins finally transfer embry- os to the pre-equilibrated culture medium.		After 3 mins finally transfer embryos to the pre-equilibrat- ed culture medium.		

NEXUS Volume: 6

				WARMING I	PROTC	DCOL		
	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
						Warm 1 Solution (WS 1)		
						Dispense two 20 μl drops of WS 1 (WS 1a and WS 1b) and place the vitrified embryos 1 quickly into WS 1b and draw 1 μl solution from WS 1a and dispense it adjacent to WS 1b and merge the drops with gradual mixing	mins	Whole procedure to be performed at 20-
						Transfer blastocyst from WS1b to the bottom of WS1a and allow it to float to the top of the drop	mins	Z/ C Minimize exposure
						Warm 2 Solution (WS 2)		of specimen to light
						Dispense two 20 µl drops of WS 2 (WS 2a 2 and WS 2b) and transfer blastocyst from WS1a to the bottom of the WS 2a and hold.	mins	uuring incubation in the warming solu- tions
<u> </u>	GLOBAL Blast	Details Not Available	NA	Details Not Available	NA	Transfer blastocyst from WS2a to the bottom 2 of WS2b and hold.	mins	Warm all solutions
						Warm 3 Solution (WS 3)		and Warm 3) to 20-
						Dispense three 20 µl drops of WS 3 (WS 3a, WS 3b and WS 3c) and transfer blastocyst from WS 2b to the bottom of WS 3a and hold.	mins	27°C before use. Make sure the con-
						Then, transfer the blastocyst from WS 3a to 3 the top of WS 3b and hold	mins	tents of each vial are well mixed by gen- tile inversion several
						Next, transfer the blastocyst from WS 3b to 3 the top of the WS 3c and hold.	mins	
						Finally, transfer the blastocyst to an Embryo GPS ^R dish of pre-equilibrated culture medi- um.		

				WARMING	PROTO	DCOL		
9.NO.	OEM	OOCYTE	TIME	EMBRYO	TIME	BLASTOCYST	TIME	KEMAKKS
						Blastocyst Warming Solution 1 Prepare the warming solution in a 4- well plate by adding 800 µl of Blastocyst Warming Solution 1 into the well 1 and 2 and imme- diately extract the blastocysts from the vitri- fication device and place them into the well 1 and stir IMMEDIATELY until the bead dissolves.		Aseptic technique should be used.
						Transfer the blastocysts to the well 2.	5 mins	Equilibrate the three Warming Solutions to 37°C before use.
~	COOK Blast	Details Not Available	NA	Details Not Available	NA	Blastocyst Warming Solution 2 Dispense 800 μl of Blastocyst Warming Solu- tion 2 into well 3 and move the blastocysts into well 3 and wash.	5 mins	Prepare a suitable volume of Blasto- cyst Medium in an
						Blastocyst Warming solution 3 Dispense 800 μl of Blastocyst Warming Solu- tion 3 into well 4 and move the blastocysts into well 4 and wash.	5 mins	in cubator with 6 % CO ₂ environment at 37°C prior to use, for the culture of the blastocysts post warming.
						Finally, place the blastocysts in the dish con- taining equilibrated Blastocyst Medium for hatching.		
8	ORIGIO Medicult	As Discussed In Part 3		As Discussed In Part 3		As Discussed In Part 3		

.

60

.

Part-3

VITRIFICATION - WARMING PROTOCOLS

Vitrification protocol followed in our centre

Vitrification is an exciting new technique which is used to cryopreserve (freeze) supernumerary oocytes and embryos. Using ultra rapid freezing techniques, it is now possible to efficiently store spare oocytes and embryos, so they can be used later on to achieve a pregnancy after warming. Survival rates after vitrification are better than they were with conventional slow freezing.

Principle The word "vitrification" comes from Latin term of glass, **vitrum**. It is the process of freezing so rapidly that the water molecules do not have time to form ice crystals, and instead instantaneously solidify into a glass-like structure.

Vitrification uses an extremely quick freezing rate (approximately 15,000°C/min) for near instantaneous freezing. Furthermore, vitrification suspends cryopreserved samples in a crystalline lattice structure that does not have ice crystal formation as a side effect.

Materials Required

Media: Medicult Vitrification Media

Cryo-devices used: McGill CryoleafTM and VitriFitTM

The vitrification kit is a DMSO (Dimethyl Sulphoxide) free, instead containing ethylene glycol and propanediol along with Human Albumin Solution (HAS) and Gentamicin Sulphate ($10 \mu g/ml$).

The kit has 2 vials

Vial 1: Equilibration Solution (2 x 1 ml) **Vial 2:** Vitrification Solution (2 x 1 ml)

Disposables

- 1. Sterile Tissue Culture Dishes (60 x 15 mm)
- 2. Transfer Pipettes (170 µl)
- 3. Tweezers
- 4. 1.8 ml cryovial base
- 5. Scissors or scalpel
- 6. Timer or stopwatch
- 7. Liquid Nitrogen reservoir (Styrofoam container with lid)
- 8. Liquid Nitrogen (sufficient volume to cover the plugged in 1.8 ml cryovial base)

Vitrification Protocol (Using Origio Medicult Media and McGill Cryoleaf as carrier device)

- 1. Prepare a 60 x 15 mm tissue culture dish and label it with Equilibration Solution (ES) and Vitrification Solution (VS). (*Fig. 1*)
- 2. Mix the contents of the Equilibration Solution and Vitrification Solution vials by a few gentle inversions. Dispense 100 µl droplets of each solution in a tissue culture dish and allow them to rest for 30 minutes at room temperature for equilibration of media. (*Fig. 2*)
- 3. Prepare a reservoir with enough liquid nitrogen to allow complete submersion of 1.8 ml cryovial base on the cryocane. Label the cryocane with specific patient identification number and attach 1.8 ml cryovial base to the bottom of it and submerge in the liquid nitrogen. (*Fig. 3*)
- 4. Prepare the number of cryo-devices according to the specimens to be vitrified and label them with the Patient ID and place near the microscope. (*Fig. 4*)
- 5. Select embryos to be vitrified from the culture dish and using a suitable pipette, transfer 2-3 embryos into the Equilibration Solution and start the timer for 5 minutes just after the transfer. (*Fig. 5*)
- 6. With 30 seconds remaining on the timer transfer the embryos in minimum volume into the Vitrification Solution and start the timer for 1 minute. (*Fig. 6*)
- 7. Meanwhile, plunge the outer cover of the McGill CryoleafTM into the LN, reservoir and let the air come out.
- 8. With 30 seconds remaining, quickly load the vitrified embryos in minimum volume (<1 μl) onto the McGill CryoleafTM using a suitable pipette. Make sure to remove excess medium carefully and quickly using the pipette. (*Fig. 7*)
- 9. Quickly immerse the McGill CryoleafTM with the embryos directly into the liquid nitrogen. (Fig. 8)
- 10. Carefully slide the protective sleeve (green) over the tip with the embryos and lock it into the place by turning. Take care that the McGill CryoleafTM remains immersed in LN₂ at all times.
- 11. Insert the McGill CryoleafTM into the outer cover and press tightly. Take care that the McGill CryoleafTM remains immersed in LN₂ at all times. (*Fig. 9*)
- 12. Repeat the steps for all set of embryos.
- 13. Transfer to the storage tank while keeping the McGill CryoleafTM immersed in LN₂. (Fig. 10)
- 14. Keep records in a record book mentioning date of vitrification, cryocane identification number, medium used, cell-stage of the embryos and the number of embryos vitrified in a cryo-device.

Warming of Vitrified Embryos

Media used: Medicult Warming Media

The warming kit contains decreasing concentration of sucrose along with Human Albumin Solution (HAS) and Gentamicin Sulfate (10 μ g/ml).

The kit has 4 vials

Vial 1: Warming Solution (1 x 2ml)
Vial 2: Dilution Solution 1 (1 x 2 ml)
Vial 3: Dilution Solution 2 (1 x 2 ml)
Vial 4: Washing Solution (2 x 2 ml)
Cryo-device used: VitriFitTM & McGill CryoleafTM

Warming Protocol

- 1. Prepare a 60 x 15 mm tissue culture dish label it with Dilution Solution 1, Dilution Solution 2 and Washing Solution and 35 x 10 mm tissue culture dish for Warming Solution. (*Fig.* 11)
- 2. Mix the content of the individual vials by a few gentle inversions prior to use and dispense 100 μ l droplets each of Dilution Solution 1, Dilution Solution 2 and Washing Solution and allow them to rest for 30 minutes to room temperature for equilibration. Meanwhile, 300 μ l of warming solution should be warmed to 37°C at least 1 hour prior to commencing warming procedure (*Fig. 12*). However, the expertise involved in using smaller volumes comes with vast experience, and beginners are requested to stick to the use of larger volumes as per manufacturer's guidelines.
- 3. Meanwhile, prepare a reservoir with enough liquid nitrogen to allow complete submersion of **1.8 ml cryovial base** on a cryocane and collect the cryocane and **1.8 ml cryovial base** containing the cryo-device with the vitrified embryos from the storage tank and quickly transfer them to the liquid nitrogen reservoir. Make sure the cryo-device is submerged under liquid nitrogen (LN₂). (*Fig. 13*)
- 4. Using forceps twist and pull the VitriFit[™] handle and cap apart. Take care all parts of the VitriFit[™] except the handle remain immersed in liquid nitrogen at all times. (*Fig. 14*)
- 5. Quickly, within few seconds take the VitriFit[™] out of the LN₂ and quickly plunge the VitriFit[™] tip with vitrified embryos facing up into Warming Solution and start the timer for 1 minute. (*Fig. 15*)
- 6. With 30 seconds remaining, using a suitable pipette and minimum volume, get ready to transfer the embryos into the Dilution Solution 1 at room temperature and start the timer for 3 minutes. (*Fig. 16*)
- 7. Next, with 30 seconds remaining and minimum volume, get ready to transfer the embryos into the Dilution Solution 2 and again start the timer for 3 minutes. (*Fig. 17*)
- 8. Next, in minimum volume transfer the embryos into the Washing Solution for 3 minutes. (Fig. 18)
- 9. Repeat the washing step by transferring the embryos to another Petri dish with washing solution.
- 10. Finally, transfer the embryos into the preferred equilibrated culture medium and allow them to rest in the incubator for minimum two hours before visual inspection.
- 11. Repeat the steps for all set of embryos.

Thermo

Vitrification Protocol

FIGURE - 1

Figure shows a 60 x 15 mm Tissue Culture Dish made up of Polystyrene (REF: 353002), manufactured by BD Falcon, Corning, USA is appropriately labeled with following details:

Time at which we start preparing the plate

Equilibration Solution (ES)

Vitrification Solution (VS)

FIGURE - 2 (a)

A variable pipette in a **volume range of 10 \mul to 100 \mul is set at 100 \mul.**

It is used to dispense media in desired volume.

0 0-

FINNPIPETTE*F2

2(a)

FIGURE - 2 (b)

Dispense **100 µl droplets** each of Equilibration Solution (ES) and Vitrification Solution (VS) separately onto the labeled tissue culture dish and two **small droplets for the washing of** the embryos.

Allow the media to rest for 30 minutes at room temperature for equilibration.

FIGURE - 3 (a)

Label the cryocane with specific Patient identification number and attach a 1.8 ml cryovial base to the bottom of it for the safe keeping of the cryo-devices in liquid nitrogen storage tanks.

FIGURE - 3 (b)

Prepare a reservoir with enough liquid nitrogen in a **Styrofoam container with certain incurvates** so that it provides more depth to the cryocane and the attached **1.8 ml cryovial base** in liquid nitrogen.

It should be noted that the Patient identification number should be visible in liquid nitrogen.

FIGURE - 4

Prepare the Cryo-devices, as we have prepared one McGill CryoleafTM and one VitriFitTM for the same patient and label its handle and cap with Patient ID.

Number of Cryo-devices is prepared according to the embryos to be vitrified.

FIGURE - 5 (a)

Select embryos to be vitrified from the culture dish using a stripper with suitable microtips (usually 170 μ m) and **transfer 2-3 embryos into the Equilibration Solution (ES)**.

The embryos **initially shrink before re-expanding** to their original size.

Equilibration is completed once the embryos have re-expanded

FIGURE - 5 (b)

The timer is set on 5 minutes for the Equilibration step.

Just after the transfer of the embryos from culture dish into the Equilibration Solution, start the timer and allow the embryos to reexpand to their original size.

After equilibration, transfer the embryos from Equilibration Solution (ES) **in minimum volume into the Vitrification Solution (VS).**

The embryos shrink again in Vitrification Solution.

The time from the transfer of the embryos into the Vitrification solution until vitrified must not **exceed 1 minute**

FIGURE - 7 (a)

Figure shows a stripper handle from COOK Medical which is set at **3** μ **l volume** of media so that embryos are vitrified in minimum volume of the media.

FIGURE - 7 (b)

With 30 seconds remaining into the Vitrification Solution, quickly **load 2-3 vitrified embryos** in minimum volume (<1 μ l) unto the McGill CryoleafTM using a 170 μ m stripper.

Make sure to remove excess medium carefully and quickly using the stripper and **quickly immerse the McGill Cryoleaf™ into the liquid nitrogen**

McGill CryoleafTM should stay dry during the process.

FIGURE - 7 (c)

Quickly **load the remaining 2-3 vitrified embryos** in minimum volume (<1 μ l) into the **concave** loading surface of VitriFitTM.

Use black mark at the tip of loading surface as reference for loading.

Make sure to remove excess medium carefully and quickly using the stripper and immediately insert the VitriFit[™] into liquid nitrogen.

FIGURE - 8 (a)

Plunge the outer cover of McGill Cryoleaf $^{\rm TM}$ into the liquid nitrogen and let the air come out.

Carefully **slide the protective sleeve (green) over the embryo loading edge** with vitrified embryos by turning and **lock it** in place.

Take care that the McGill Cryoleaf $^{\rm TM}$ remains immersed in liquid nitrogen at all times.

FIGURE - 8 (b)

Plunge the cap of the VitriFit $^{\rm TM}$ into the liquid nitrogen and allow the air to come out.

Take care that the $VitriFit^{\ensuremath{\mathbb{T}}\ensuremath{\mathbb{N}}}$ remains immersed in liquid nitrogen at all times.

FIGURE - 9 (a)

Insert the McGill $\mathsf{Cryoleaf}^{\mathsf{TM}}$ into its outer cover and press tightly to ensure locking.

Patient ID should be matched for both the handle and the outer cover to avoid chances of cross contamination.

Part of McGill Cryoleaf $^{\rm TM}$ till the red marking should remain immersed in liquid nitrogen.

FIGURE - 9 (b)

Insert the VitiFit[™] into its cap and press tightly to ensure locking.

Patient ID should be matched for both body and the cap to avoid chances of cross contamination.

Take care that VitriFit[™] remains immersed in liquid nitrogen.

Fit the Cryo-devices into the 1.8 ml cryovial base on a labeled aluminium cryocane.

Next, quickly transfer the cryocane to the storage tank.

Make sure that the vitrified embryos are submerged under liquid nitrogen at all times.

Warming Protocol

FIGURE - 11 (a)

A variable pipette in a **volume range of 100 µl to 1000 µl** is used to dispense Warming Media in desired volume.

Win (Invig) IO: 100

hermo

500-

FINNP

11(a)

FIGURE - 11 (b)

Figure shows a 35 x 10 mm Tissue Culture Dish made up of Polystyrene (REF: 353001), manufactured by BD Falcon, Corning, USA is appropriately labeled with following details:

Time at which we start preparing the plate

Warming Media (WM)

FIGURE - 11 (c)

Figure shows a 60 x 15 mm Tissue Culture Dish made up of Polystyrene (REF: 353002), manufactured by BD Falcon, Corning, USA is appropriately labeled with following details:

Time at which we start preparing the plate Dilution Solution1 (**DS 1**) Dilution Solution 2 (**DS 2**) Washing Solution (**WS**)

FIGURE - 12 (a)

Dispense 300 μl droplet of Warming Media onto the same labeled tissue culture dish

This should have been warmed to 37°C for at least 1 hour prior to starting warming.

FIGURE - 12 (b)

Dispense 100 μ l droplets each of Dilution Solution 1 (DS 1), Dilution Solution 2 (DS 2) and Washing Solution (WS) separately onto the same labeled tissue culture dish and two small droplets for the washing of the embryos.

Allow the media to **rest for 30 minutes at room temperature** for equilibration.

FIGURE - 13 (a)

Prepare a reservoir with enough liquid nitrogen in a Styrofoam container with incurvates on one side to allow complete submersion of the aluminium cryocane with plugged in 1.8 ml cryovial base.

FIGURE - 13 (b)

Collect the cryocane and the cryo-device with the vitrified embryos from the storage tank and quickly transfer them to the liquid nitrogen reservoir.

Make sure the cryo-device is submerged under liquid nitrogen.

Using forceps **twist and pull the VitriFit[™] handle and cap apart** while keeping the tip region fully immersed in liquid nitrogen.

FIGURE - 15

Quickly, within 1 second, **plunge** the VitriFitTM tip with the vitrified embryos facing up **into the Warming Media** and under microscopic observations, gently move the VitriFitTM until the embryos are released from the tip.

Leave the embryos for maximum of 60 seconds (at this point, embryos are still shrunken)

FIGURE - 16

Using $170 \ \mu m$ stripper tightly mounted unto the handle and minimum volume of Warming media, **transfer the embryos into the Dilution solution** 1 at room temperature.

Leave the embryos into the Dilution Solution 1 for **3 minutes (at this point, embryos will start to re-expand).**

Before transferring the embryos into the Dilution Solution 2, wash the embryos in small droplet of Dilution Solution 1

FIGURE - 17

In minimum volume of Dilution Solution 1, **transfer the embryos into the Dilution Solution 2.**

Leave the embryos into the Dilution Solution 2 for **3 minutes (at this point, embryos will continue the re-expansion).**

Before transferring the embryos into the Washing Solution, wash the embryos in small droplet of Dilution Solution 2.

Finally, in minimum volume of Dilution Solution 2, **transfer the embryos into the Washing Solution** and leave embryos into it **for 3 minutes.**

Embryos at this stage **are fully re-expanded** and transfer them into the preferred pre-equilibrated culture medium and allow them to rest in incubator for minimum of two hours before visual inspection.

FIGURE - 19

The working magnification of the stereozoom microscope is set at 0.8 to 1.2 X (X 10x for eyepiece) as embryo manipulation and loading is easiest at low magnifications. However, the magnification may be increased to assess for collapse and re-expansion as necessary

The effect of Vtrification and Warming on Embryos: Under the Microscope

FIGURE - 20

Grade 1, 6-cell embryo with minimal fragments.

21

FIGURE - 21

A 6 cell, grade 1, embryo in Equilibration Solution. Contact period of the embryos with media is 5 minutes.

A 6-cell grade I embryo now in Equilibration Solution at the end of 2 minutes. We can appreciate sudden contraction of the blastomeres. Perivitelline space is contracted. Zona pellucida looks regular. Embryos are very fragile at this stage and require gentle handling. Use appropriate size pipettes to rinse the embryos.

FIGURE - 23

A 6-cell, embryo in ES after 1 minute of contact. Embryos gradually expand as equilibration occurs over period of 5 minutes.

FIGURE - 24

Quickly load 2-3 vitrified embryos in minimum volume (<1 μ l) into the **concave** loading surface of VitriFitTM. Use black mark at the tip of loading surface as reference for loading.Make sure to remove excess medium carefully and quickly using the stripper and immediately immerse the VitriFitTM into liquid nitrogen

25

Embryo Warming

FIGURE - 25

Quickly, within 1 second, plunge the VitriFitTM tip with the vitrified embryos facing up into the Warming Media and under microscopic observations, gently move the VitriFitTM until the embryos are released from the tip. Leave the embryos for maximum of 60 seconds (at this point, embryos are still shrunken).

FIGURE - 26

Transfer the embryos into DM1 and let the embryos remain in this solution for 3 minutes. Embryos are still shrunken and difficult to visualize and they move towards the periphery of the media well. These are very fragile and should be handled very gently with appropriate sized pipette. We should work at low light and less magnification. This makes embryo aspiration and handling easier. Embryos are still dehydrated and difficult to visualize.

FIGURE - 27

A six - cell embryo in wash solution. Embryo is recovering its original shape. Gradually the blastomeres become becoming more translucent and clear. The blastomeres are regular and compact. Zona pellucida is healthy.

FIGURE - 28

A six cell, grade 1, fully recovered embryo after culture in cleavage stage Media. Blastomeres are regular and normal shape. Zona pellucida is intact and regular.

Oocyte Vitrification

FIGURE - 29

Oocytes denuded using hyaluronic acid. Any commercial brand may be used in concentration of 80 IU/ml.

FIGURE - 30

Oocyte in equilibration media. We can visualize shrinking and irregularity of oolemma occurring immediately after contact of oocyte with the media .Infolding of the oolemma is seen.Intact polar body is seen at 11° clock position.

FIGURE - 31

After 3 minutes of contact period of ES and the oocyte , we can see the oolemma returning to the original state. The ooplasm looks healthy though some amount of crenations along the edges are still seen. Polar body is at $12^{\circ0}$ clock position and is non fragmented.

FIGURE - 32

Fully expanded oocytes that have returned to the original state after a contact period of 4 minutes in ES.

FIGURE - 33

Oocytes are now shifted to the vitrification media. Spray minimal volume of VS on oocytes in ES. These are now aspirated in minimal volume of ES and transferred to well 2 containing VS. Oocytes are to be handled very gently in Vitrification media. From transfer in of oocytes to the VS and to the loading on the cryoleaf oocytes should not spend more than 60 seconds in VS.

Oocyte Warming

FIGURE - 34

Outer sheath of the cryoleaf is removed under liquid nitrogen. Green sleave is unlocked and the tip of cryoleaf containing the oocytes is dipped in the 400 microlitre warming medium in a single well dish. Alternatively, 100 microlitre droplet could be made and warming carried out. The vitrification media are not recommended to be covered with oil as it will create contamination and coat the oocytes leading to delayed osmotic changes.

FIGURE - 35

Oocyte as seen in the warming media. Maximum contact period of the oocyte with warming media permitted is 1 min. Ooplasm here is contracted and oolemma is wrinkled. Wide perivitelline space is observed and zona pellucida is intact.

FIGURE - 36

Oocytes being transferred from diluent media 1 and 2 to washing media 1 and 2 as shown in the figure. Oocytes are kept in each media for 3 min each and then are finally transferred to the IVF media.

FIGURE - 37

Oocytes gradually recover in the diluting media 1. Maximum contact period permitted here is 3 minutes. Oocyte now is gradually expanding, looks normal and oolemma appears to be healthy. Polar body is seen at the 1 $^{\circ}$ clock position.

76

FIGURE - 38

Oocyte is further recovering in the washing media 1. Perivitelline space is decreasing and oolema is expanding circumferentially. Zona pellucida is healthy and polar body is seen at 11 °clock position.

Part-4

TABLE- 15: OEM & Vendor Related Contact Information

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	INDIA DISTRIBUTOR	DEVICE BRAND	PRICE PER DEVICE	CONTACT PERSON	PHONE	EMAIL
1.	ORIGIO a/s Knardrupvej2 2760 Malov Denmark	Origio India Pvt.Ltd.	Mc Gill Cryoleaf™ (REF: 40770000A)	Not disclosed	Mr. Piyush Jain	+91 7042396972	pjain@origio.com
2.	ORIGIO a/s Knardrupvej 2 2760 Malov Denmark	Origio India Pvt. Ltd.	VitriFit[™] (REF: 42802001A)	Not disclosed	Mr. Piyush Jain	+91 7042396972	pjain@origio.com
3.	Vitrolife Sweden AB Gus- taf Werners gata 2 SE-421 32 Vasta Frolunda Sweden	Vision Diagnostics Pvt. Ltd.	Rapid-i™ Kit (REF: 94419)	INR 1100	Mr. Punit Khatnani	+91 9910188771	punit@vision-groups. com
4.	K ITAZATO BioPharma Co., Ltd 278-7 Mtonima, Fuji city, Shizuo- ka JAPAN	SAR Health Line Pvt.Ltd	Cryotop ^R (REF: 81113)	INR 1900	Mr. Atul Walia	+91 9958029696	info@sarhealth.com
5.	CryoBio System Groupe I.M.V Technologies France	CryoBio System India	HSV Kit (REF: 025463)	INR 850	Mr. Jitender Kumar	+91 9650602424	jitender@cryobiosys- temindia.com
6.	Biotech Inc. 11539 Parf Woods Cir. Suite 202 Alpharentta, GA, USA	SAR Health Line Pvt.Ltd.	Cryolock™ (REF: CL-R-CT)	INR 1248	Mr. Atul Walia	+91 9958029696	info@sarhealth.com
7.	Cryotech Japan Reprolife, 2-5-3 9F, Shinjuku, Shinjuku-ku, Tokyo, 160-0022	Cryo Tech India Mumbai	Cryotech™ (REF: ТЕС: 010R, 010W, 010В, 010В, 010Y)	INR 1,680	Dr. Chetan Sowani Mrs. Goral Gandhi	+91 9819855095 +91 9821618106	info@cryotechindia. com

78

NEXUS Volume: 6

.

TABLE- 16: OEM & Vendor Related Contact Information For Media

S.NO.	ORIGINAL EQUIPMENT MANUFACTURER (OEM)	INDIA DISTRIBUTOR	PACK- BRAND	PRICE PER PACK	CONTACT PERSON	PHONE	EMAIL
1.	ORIGIO a/s Knardrupvej2 2760 Malov Denmark	Origio India Pvt. Ltd.	Origio Medicult	Not disclosed	Mr. Piyush Jain	+91 7042396972	pjain@origio.com
2.	Vitrolife Sweden AB Gustaf Werners gata 2 SE-421 32 Vasta Frolunda Sweden	Vision Diagnostics Pvt. Ltd.	Vitri Omni	INR 18000/-	Mr. Punit Khatnani	+91 9910188771	punit@vi- sion-groups.com
3.	KITAZATO Bio-Pharma Co., Ltd 278-7 Mtonima, Fuji city, Shizuoka JAPAN	SAR Health Line Pvt.Ltd	Kitazato	Vitrification: INR 9500/- (plus tax) Warming: INR 8500/- (plus tax)	Mr. Atul Walia	+91 9958029696	info@sarhealth.com
4.	CryoBio System Groupe I.M.V Tech- nologies France	CryoBio System India	Irwine	INR 16,000/- (plus tax)	Mr. Jitender Kumar	+91 9650602424	jitender@cryobio- systemindia.com
5.	Cryotech Japan, Reprolife, 2-5-3 9F Shinjuku, Shin- juku-ku, Tokyo, 160-0022	Cryotech India (Indo Nippon Medical Trading Co.)	Cryotech India Mumbai	Vitrification: INR 13,440/- (plus tax) Warming: INR 6,720/- (plus tax)	Dr. Chetan Sowani Mrs. Goral Gandhi	+91 9819855905 +91 9821618106	info@cryotechindia. com
6.	Life Global , LLC 393, Soundview Road, Guilford, CT, 06437, USA	Shivani Scientific India Pvt. Ltd.	Global Blastocyst	INR 32,000/-	Mr. Amol Sharan	+91 9990199933	amols@shivanisci- entific.com, amolsharan@gmail. com
7.	Cook Medical Inc. P.O Box 4195, Bloomington, In 474024195, USA	Intermedics	Sydney IVF Blastocyst vitrifica- tion	INR 19,850/-	Mr. Gopal	+91 9212798185	projects@intermed- ics.in

79

Next Generation ART

Products and services for every step of the ART cycle

Over the last few years some of the strongest, most trusted companies in ART have come together, under the CooperSurgical company flagship, to form an innovative and knowledgeable partnership dedicated to the fertility sector.

Building on the well-established market position of these five companies, this collaboration opens the door to driving innovation in line with techniques and our customer's needs, offering tailored product solutions for ART procedures and high class training to back these up.

Visit our website to find out more

QUALITY CONTROL OOCYTE RETRIEVAL ANDROLOGY & IUI FERTILIZATION CULTURE PGD & PGS CRYOPRESERVATION EMBRYO TRANSFER

Reprogenetics™

<u>CoperGenor</u>

a CooperSurgical company

Recombine[™] Genesis Genetics[™]

ORIGIO India Private Limited

C-401, Delphi, Hiranandani Business Park, Powai, Mumbai - 400076 Phone: +91 22 49280000 www.origio.com

(origio)+(RI

CooperSurgical Compani

Editor Nexus Jt. Secretary Indian Fertility Society M: +91 9810790063, E: pankaj_1310@yahoo.co.in

C Information & Pictures are Copy Righted by Education Committee Indian Fertility Society, India No Conflict of Interest and the Bulletin is being brought out by Education Grant by Origio India Pvt. Ltd.